41 research outputs found

    The katG mRNA of Mycobacterium tuberculosis and Mycobacterium smegmatis is processed at its 5' end and is stabilized by both a polypurine sequence and translation initiation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In <it>Mycobacterium tuberculosis </it>and in <it>Mycobacterium smegmatis </it>the <it>furA</it>-<it>katG </it>loci, encoding the FurA regulatory protein and the KatG catalase-peroxidase, are highly conserved. In <it>M. tuberculosis furA-katG </it>constitute a single operon, whereas in <it>M. smegmatis </it>a single mRNA covering both genes could not be found. In both species, specific 5' ends have been identified: the first one, located upstream of the <it>furA </it>gene, corresponds to transcription initiation from the <it>furA </it>promoter; the second one is the <it>katG </it>mRNA 5' end, located in the terminal part of <it>furA</it>.</p> <p>Results</p> <p>In this work we demonstrate by in vitro transcription and by RNA polymerase Chromatin immunoprecipitation that no promoter is present in the <it>M. smegmatis </it>region covering the latter 5' end, suggesting that it is produced by specific processing of longer transcripts. Several DNA fragments of <it>M. tuberculosis </it>and <it>M. smegmatis </it>were inserted in a plasmid between the <it>sigA </it>promoter and the <it>lacZ </it>reporter gene, and expression of the reporter gene was measured. A polypurine sequence, located four bp upstream of the <it>katG </it>translation start codon, increased beta-galactosidase activity and stabilized the <it>lacZ </it>transcript. Mutagenesis of this sequence led to destabilization of the mRNA. Analysis of constructs, in which the polypurine sequence of <it>M. smegmatis </it>was followed by an increasing number of <it>katG </it>codons, demonstrated that mRNA stability requires translation of at least 20 amino acids. In order to define the requirements for the 5' processing of the <it>katG </it>transcript, we created several mutations in this region and analyzed the 5' ends of the transcripts: the distance from the polypurine sequence does not seem to influence the processing, neither the sequence around the cutting point. Only mutations which create a double stranded region around the processing site prevented RNA processing.</p> <p>Conclusion</p> <p>This is the first reported case in mycobacteria, in which both a polypurine sequence and translation initiation are shown to contribute to mRNA stability. The <it>furA-katG </it>mRNA is transcribed from the <it>furA </it>promoter and immediately processed; this processing is prevented by a double stranded RNA at the cutting site, suggesting that the endoribonuclease responsible for the cleavage cuts single stranded RNA.</p

    Characterization of the Promoter, MxiE Box and 5′ UTR of Genes Controlled by the Activity of the Type III Secretion Apparatus in Shigella flexneri

    Get PDF
    Activation of the type III secretion apparatus (T3SA) of Shigella flexneri, upon contact of the bacteria with host cells, and its deregulation, as in ipaB mutants, specifically increases transcription of a set of effector-encoding genes controlled by MxiE, an activator of the AraC family, and IpgC, the chaperone of the IpaB and IpaC translocators. Thirteen genes carried by the virulence plasmid (ospB, ospC1, ospD2, ospD3, ospE1, ospE2, ospF, ospG, virA, ipaH1.4, ipaH4.5, ipaH7.8 and ipaH9.8) and five genes carried by the chromosome (ipaHa-e) are regulated by the T3SA activity. A conserved 17-bp MxiE box is present 5′ of most of these genes. To characterize the promoter activity of these MxiE box-containing regions, similar ∼67-bp DNA fragments encompassing the MxiE box of 14 MxiE-regulated genes were cloned 5′ of lacZ in a promoter probe plasmid; β-galactosidase activity detected in wild-type and ipaB strains harboring these plasmids indicated that most MxiE box-carrying regions contain a promoter regulated by the T3SA activity and that the relative strengths of these promoters cover an eight-fold range. The various MxiE boxes exhibiting up to three differences as compared to the MxiE box consensus sequence were introduced into the ipaH9.8 promoter without affecting its activity, suggesting that they are equally efficient in promoter activation. In contrast, all nucleotides conserved among MxiE boxes were found to be involved in MxiE-dependent promoter activity. In addition, we present evidence that the 5′ UTRs of four MxiE-regulated genes enhance expression of the downstream gene, presumably by preventing degradation of the mRNA, and the 5′ UTRs of two other genes carry an ancillary promoter
    corecore