2,255 research outputs found
Recommended from our members
Emissions from village cookstoves in Haryana, India, and their potential impacts on air quality
Air quality in rural India is impacted by residential cooking and heating with biomass fuels. In this study, emissions of CO, CO2, and 76 volatile organic compounds (VOCs) and fine particulate matter (PM2.5) were quantified to better understand the relationship between cook fire emissions and ambient ozone and secondary organic aerosol (SOA) formation. Cooking was carried out by a local cook, and traditional dishes were prepared on locally built chulha or angithi cookstoves using brushwood or dung fuels. Cook fire emissions were collected throughout the cooking event in a Kynar bag (VOCs) and on polytetrafluoroethylene (PTFE) filters (PM2.5). Gas samples were transferred from a Kynar bag to previously evacuated stainless-steel canisters and analyzed using gas chromatography coupled to flame ionization, electron capture, and mass spectrometry detectors. VOC emission factors were calculated from the measured mixing ratios using the carbon-balance method, which assumes that all carbon in the fuel is converted to CO2, CO, VOCs, and PM2.5 when the fuel is burned. Filter samples were weighed to calculate PM2.5 emission factors. Dung fuels and angithi cookstoves resulted in significantly higher emissions of most VOCs (p < 0.05). Utilizing dung-angithi cook fires resulted in twice as much of the measured VOCs compared to dung-chulha and 4 times as much as brushwood-chulha, with 84.0, 43.2, and 17.2g measured VOCkgg fuel carbon, respectively. This matches expectations, as the use of dung fuels and angithi cookstoves results in lower modified combustion efficiencies compared to brushwood fuels and chulha cookstoves. Alkynes and benzene were exceptions and had significantly higher emissions when cooking using a chulha as opposed to an angithi with dung fuel (for example, benzene emission factors were 3.18gkgg fuel carbon for dung-chulha and 2.38gkgg fuel carbon for dung-angithi). This study estimated that 3 times as much SOA and ozone in the maximum incremental reactivity (MIR) regime may be produced from dung-chulha as opposed to brushwood-chulha cook fires. Aromatic compounds dominated as SOA precursors from all types of cook fires, but benzene was responsible for the majority of SOA formation potential from all chulha cook fire VOCs, while substituted aromatics were more important for dung-angithi. Future studies should investigate benzene exposures from different stove and fuel combinations and model SOA formation from cook fire VOCs to verify public health and air quality impacts from cook fires
Molecular composition of particulate matter emissions from dung and brushwood burning household cookstoves in Haryana, India
Emissions of airborne particles from biomass burning are a significant source of black carbon (BC) and brown carbon (BrC) in rural areas of developing countries where biomass is the predominant energy source for cooking and heating. This study explores the molecular composition of organic aerosols from household cooking emissions with a focus on identifying fuel-specific compounds and BrC chromophores. Traditional meals were prepared by a local cook with dung and brushwood-fueled cookstoves in a village in Palwal district, Haryana, India. Cooking was done in a village kitchen while controlling for variables including stove type, fuel moisture, and meal. Fine particulate matter (PM2.5) emissions were collected on filters, and then analyzed via nanospray desorption electrospray ionization-high-resolution mass spectrometry (nano-DESI-HRMS) and high-performance liquid chromatography-photodiode array-high-resolution mass spectrometry (HPLC-PDA-HRMS) techniques. The nano-DESI-HRMS analysis provided an inventory of numerous compounds present in the particle phase. Although several compounds observed in this study have been previously characterized using gas chromatography methods a majority of the species in the nano-DESI spectra were newly observed biomass burning compounds. Both the stove (chulha or angithi) and the fuel (brushwood or dung) affected the composition of organic aerosols. The geometric mean of the PM2.5 emission factor and the observed molecular complexity increased in the following order: brushwood-chulha (7.3±1.8 g kg-1 dry fuel, 93 compounds), dung-chulha (21.1±4.2 g kg-1 dry fuel, 212 compounds), and dung-angithi (29.8±11.5 g kg-1 dry fuel, 262 compounds). The mass-normalized absorption coefficient (MACbulk) for the organic-solvent extractable material for brushwood PM2.5 was 3.7±1.5 and 1.9±0.8m2 g-1 at 360 and 405 nm, respectively, which was approximately a factor of two higher than that for dung PM2.5. The HPLC-PDA-HRMS analysis showed that, regardless of fuel type, the main chromophores were CxHyOz lignin fragments. The main chromophores accounting for the higher MACbulk values of brushwood PM2.5 were C8H10O3 (tentatively assigned to syringol), nitrophenols C8H9NO4, and C10H10O3 (tentatively assigned to methoxycinnamic acid)
Parton Fragmentation within an Identified Jet at NNLL
The fragmentation of a light parton i to a jet containing a light energetic
hadron h, where the momentum fraction of this hadron as well as the invariant
mass of the jet is measured, is described by "fragmenting jet functions". We
calculate the one-loop matching coefficients J_{ij} that relate the fragmenting
jet functions G_i^h to the standard, unpolarized fragmentation functions D_j^h
for quark and gluon jets. We perform this calculation using various IR
regulators and show explicitly how the IR divergences cancel in the matching.
We derive the relationship between the coefficients J_{ij} and the quark and
gluon jet functions. This provides a cross-check of our results. As an
application we study the process e+ e- to X pi+ on the Upsilon(4S) resonance
where we measure the momentum fraction of the pi+ and restrict to the dijet
limit by imposing a cut on thrust T. In our analysis we sum the logarithms of
tau=1-T in the cross section to next-to-next-to-leading-logarithmic accuracy
(NNLL). We find that including contributions up to NNLL (or NLO) can have a
large impact on extracting fragmentation functions from e+ e- to dijet + h.Comment: expanded introduction, typos fixed, journal versio
Recommended from our members
Impacts of household sources on air pollution at village and regional scales in India
Approximately 3 billion people worldwide cook with solid fuels, such as wood, charcoal, and agricultural residues. These fuels, also used for residential heating, are often combusted in inefficient devices, producing carbonaceous emissions. Between 2.6 and 3.8 million premature deaths occur as a result of exposure to fine particulate matter from the resulting household air pollution (Health Effects Institute, 2018a; World Health Organization, 2018). Household air pollution also contributes to ambient air pollution; the magnitude of this contribution is uncertain. Here, we simulate the distribution of the two major health-damaging outdoor air pollutants (PM2:5 and O3) using state-of-thescience emissions databases and atmospheric chemical transport models to estimate the impact of household combustion on ambient air quality in India. The present study focuses on New Delhi and the SOMAARTH Demographic, Development, and Environmental Surveillance Site (DDESS) in the Palwal District of Haryana, located about 80 km south of New Delhi. The DDESS covers an approximate population of 200 000 within 52 villages. The emissions inventory used in the present study was prepared based on a national inventory in India (Sharma et al., 2015, 2016), an updated residential sector inventory prepared at the University of Illinois, updated cookstove emissions factors from Fleming et al. (2018b), and PM2:5 speciation from cooking fires from Jayarathne et al. (2018). Simulation of regional air quality was carried out using the US Environmental Protection Agency Community Multiscale Air Quality modeling system (CMAQ) in conjunction with the Weather Research and Forecasting modeling system (WRF) to simulate the meteorological inputs for CMAQ, and the global chemical transport model GEOS-Chem to generate concentrations on the boundary of the computational domain. Comparisons between observed and simulated O3 and PM2:5 levels are carried out to assess overall airborne levels and to estimate the contribution of household cooking emissions
The Quark Beam Function at NNLL
In hard collisions at a hadron collider the most appropriate description of
the initial state depends on what is measured in the final state. Parton
distribution functions (PDFs) evolved to the hard collision scale Q are
appropriate for inclusive observables, but not for measurements with a specific
number of hard jets, leptons, and photons. Here the incoming protons are probed
and lose their identity to an incoming jet at a scale \mu_B << Q, and the
initial state is described by universal beam functions. We discuss the
field-theoretic treatment of beam functions, and show that the beam function
has the same RG evolution as the jet function to all orders in perturbation
theory. In contrast to PDF evolution, the beam function evolution does not mix
quarks and gluons and changes the virtuality of the colliding parton at fixed
momentum fraction. At \mu_B, the incoming jet can be described perturbatively,
and we give a detailed derivation of the one-loop matching of the quark beam
function onto quark and gluon PDFs. We compute the associated NLO Wilson
coefficients and explicitly verify the cancellation of IR singularities. As an
application, we give an expression for the next-to-next-to-leading logarithmic
order (NNLL) resummed Drell-Yan beam thrust cross section.Comment: 54 pages, 9 figures; v2: notation simplified in a few places, typos
fixed; v3: journal versio
Inside-Out Evacuation of Transitional Protoplanetary Disks by the Magneto-Rotational Instability
How do T Tauri disks accrete? The magneto-rotational instability (MRI)
supplies one means, but protoplanetary disk gas is typically too poorly ionized
to be magnetically active. Here we show that the MRI can, in fact, explain
observed accretion rates for the sub-class of T Tauri disks known as
transitional systems. Transitional disks are swept clean of dust inside rim
radii of ~10 AU. Stellar coronal X-rays ionize material in the disk rim,
activating the MRI there. Gas flows from the rim to the star, at a rate limited
by the depth to which X-rays ionize the rim wall. The wider the rim, the larger
the surface area that the rim wall exposes to X-rays, and the greater the
accretion rate. Interior to the rim, the MRI continues to transport gas; the
MRI is sustained even at the disk midplane by super-keV X-rays that Compton
scatter down from the disk surface. Accretion is therefore steady inside the
rim. Blown out by radiation pressure, dust largely fails to accrete with gas.
Contrary to what is usually assumed, ambipolar diffusion, not Ohmic
dissipation, limits how much gas is MRI-active. We infer values for the
transport parameter alpha on the order of 0.01 for GM Aur, TW Hyd, and DM Tau.
Because the MRI can only afflict a finite radial column of gas at the rim, disk
properties inside the rim are insensitive to those outside. Thus our picture
provides one robust setting for planet-disk interaction: a protoplanet interior
to the rim will interact with gas whose density, temperature, and transport
properties are definite and decoupled from uncertain initial conditions. Our
study also supplies half the answer to how disks dissipate: the inner disk
drains from the inside out by the MRI, while the outer disk photoevaporates by
stellar ultraviolet radiation.Comment: Accepted to Nature Physics June 7, 2007. The manuscript for
publication is embargoed per Nature policy. This arxiv.org version contains
more technical details and discussion, and is distributed with permission
from the editors. 10 pages, 4 figure
Recommended from our members
Bioavailability in soils
The consumption of locally-produced vegetables by humans may be an important exposure pathway for soil contaminants in many urban settings and for agricultural land use. Hence, prediction of metal and metalloid uptake by vegetables from contaminated soils is an important part of the Human Health Risk Assessment procedure. The behaviour of metals (cadmium, chromium, cobalt, copper, mercury, molybdenum, nickel, lead and zinc) and metalloids (arsenic, boron and selenium) in contaminated soils depends to a large extent on the intrinsic charge, valence and speciation of the contaminant ion, and soil properties such as pH, redox status and contents of clay and/or organic matter. However, chemistry and behaviour of the contaminant in soil alone cannot predict soil-to-plant transfer. Root uptake, root selectivity, ion interactions, rhizosphere processes, leaf uptake from the atmosphere, and plant partitioning are important processes that ultimately govern the accumulation ofmetals and metalloids in edible vegetable tissues. Mechanistic models to accurately describe all these processes have not yet been developed, let alone validated under field conditions. Hence, to estimate risks by vegetable consumption, empirical models have been used to correlate concentrations of metals and metalloids in contaminated soils, soil physico-chemical characteristics, and concentrations of elements in vegetable tissues. These models should only be used within the bounds of their calibration, and often need to be re-calibrated or validated using local soil and environmental conditions on a regional or site-specific basis.Mike J. McLaughlin, Erik Smolders, Fien Degryse, and Rene Rietr
Analytic philosophy for biomedical research: the imperative of applying yesterday's timeless messages to today's impasses
The mantra that "the best way to predict the future is to invent it" (attributed to the computer scientist Alan Kay) exemplifies some of the expectations from the technical and innovative sides of biomedical research at present. However, for technical advancements to make real impacts both on patient health and genuine scientific understanding, quite a number of lingering challenges facing the entire spectrum from protein biology all the way to randomized controlled trials should start to be overcome. The proposal in this chapter is that philosophy is essential in this process. By reviewing select examples from the history of science and philosophy, disciplines which were indistinguishable until the mid-nineteenth century, I argue that progress toward the many impasses in biomedicine can be achieved by emphasizing theoretical work (in the true sense of the word 'theory') as a vital foundation for experimental biology. Furthermore, a philosophical biology program that could provide a framework for theoretical investigations is outlined
Mortality following Stroke, the Weekend Effect and Related Factors: Record Linkage Study
Increased mortality following hospitalisation for stroke has been reported from many but not all studies that have investigated a 'weekend effect' for stroke. However, it is not known whether the weekend effect is affected by factors including hospital size, season and patient distance from hospital.To assess changes over time in mortality following hospitalisation for stroke and how any increased mortality for admissions on weekends is related to factors including the size of the hospital, seasonal factors and distance from hospital.A population study using person linked inpatient, mortality and primary care data for stroke from 2004 to 2012. The outcome measures were, firstly, mortality at seven days and secondly, mortality at 30 days and one year.Overall mortality for 37 888 people hospitalised following stroke was 11.6% at seven days, 21.4% at 30 days and 37.7% at one year. Mortality at seven and 30 days fell significantly by 1.7% and 3.1% per annum respectively from 2004 to 2012. When compared with week days, mortality at seven days was increased significantly by 19% for admissions on weekends, although the admission rate was 21% lower on weekends. Although not significant, there were indications of increased mortality at seven days for weekend admissions during winter months (31%), in community (81%) rather than large hospitals (8%) and for patients resident furthest from hospital (32% for distances of >20 kilometres). The weekend effect was significantly increased (by 39%) for strokes of 'unspecified' subtype.Mortality following stroke has fallen over time. Mortality was increased for admissions at weekends, when compared with normal week days, but may be influenced by a higher stroke severity threshold for admission on weekends. Other than for unspecified strokes, we found no significant variation in the weekend effect for hospital size, season and distance from hospital
Radio Emission from Ultra-Cool Dwarfs
The 2001 discovery of radio emission from ultra-cool dwarfs (UCDs), the very
low-mass stars and brown dwarfs with spectral types of ~M7 and later, revealed
that these objects can generate and dissipate powerful magnetic fields. Radio
observations provide unparalleled insight into UCD magnetism: detections extend
to brown dwarfs with temperatures <1000 K, where no other observational probes
are effective. The data reveal that UCDs can generate strong (kG) fields,
sometimes with a stable dipolar structure; that they can produce and retain
nonthermal plasmas with electron acceleration extending to MeV energies; and
that they can drive auroral current systems resulting in significant
atmospheric energy deposition and powerful, coherent radio bursts. Still to be
understood are the underlying dynamo processes, the precise means by which
particles are accelerated around these objects, the observed diversity of
magnetic phenomenologies, and how all of these factors change as the mass of
the central object approaches that of Jupiter. The answers to these questions
are doubly important because UCDs are both potential exoplanet hosts, as in the
TRAPPIST-1 system, and analogues of extrasolar giant planets themselves.Comment: 19 pages; submitted chapter to the Handbook of Exoplanets, eds. Hans
J. Deeg and Juan Antonio Belmonte (Springer-Verlag
- …
