3,238 research outputs found

    Concept and Implementation of Pes Program in the Cidanau Watershed: a Lesson Learned for Future Environmental Policy

    Full text link
    Objective of the paper is to depict the concept of PES (Payment for Environmental Services) and its implementation in the Cidanau Watershed. This paper is a success story of PES implementation starting from the early adoption of the concept. The study shows that PES has impressed by many institutions, which was then initiated by PT KTI (Krakatau Tirta Industri) as a pilot project of the concept implementation. The main practice of PES implementation activities was promoting conservation farming, including transfer of conservation technology and trees growing. The conservation farming showed good development, which was characterized by more trees planted, more conservation technology applied, and more optimistic expectation for income increase. Moreover, PES Program will not only attract the farmers who participated in the program, but also other farmers who were not included in it. With such promising performance, PES Program can potentially be adopted by farmers and provide solution to various problems encountered in the Cidanau Watershed

    Universal scaling properties of extremal cohesive holographic phases

    Get PDF
    We show that strongly-coupled, translation-invariant holographic IR phases at finite density can be classified according to the scaling behaviour of the metric, the electric potential and the electric flux introducing four critical exponents, independently of the details of the setup. Solutions fall into two classes, depending on whether they break relativistic symmetry or not. The critical exponents determine key properties of these phases, like thermodynamic stability, the (ir)relevant deformations around them, the low-frequency scaling of the optical conductivity and the nature of the spectrum for electric perturbations. We also study the scaling behaviour of the electric flux through bulk minimal surfaces using the Hartnoll-Radicevic order parameter, and characterize the deviation from the Ryu-Takayanagi prescription in terms of the critical exponents.Comment: v4: corrected a typo in eqn (3.29), now (3.28). Conclusions unchange

    Cooper pairing near charged black holes

    Full text link
    We show that a quartic contact interaction between charged fermions can lead to Cooper pairing and a superconducting instability in the background of a charged asymptotically Anti-de Sitter black hole. For a massless fermion we obtain the zero mode analytically and compute the dependence of the critical temperature T_c on the charge of the fermion. The instability we find occurs at charges above a critical value, where the fermion dispersion relation near the Fermi surface is linear. The critical temperature goes to zero as the marginal Fermi liquid is approached, together with the density of states at the Fermi surface. Besides the charge, the critical temperature is controlled by a four point function of a fermionic operator in the dual strongly coupled field theory.Comment: 1+33 pages, 4 figure

    N-player quantum games in an EPR setting

    Get PDF
    The NN-player quantum game is analyzed in the context of an Einstein-Podolsky-Rosen (EPR) experiment. In this setting, a player's strategies are not unitary transformations as in alternate quantum game-theoretic frameworks, but a classical choice between two directions along which spin or polarization measurements are made. The players' strategies thus remain identical to their strategies in the mixed-strategy version of the classical game. In the EPR setting the quantum game reduces itself to the corresponding classical game when the shared quantum state reaches zero entanglement. We find the relations for the probability distribution for NN-qubit GHZ and W-type states, subject to general measurement directions, from which the expressions for the mixed Nash equilibrium and the payoffs are determined. Players' payoffs are then defined with linear functions so that common two-player games can be easily extended to the NN-player case and permit analytic expressions for the Nash equilibrium. As a specific example, we solve the Prisoners' Dilemma game for general N2 N \ge 2 . We find a new property for the game that for an even number of players the payoffs at the Nash equilibrium are equal, whereas for an odd number of players the cooperating players receive higher payoffs.Comment: 26 pages, 2 figure

    The Spin of Holographic Electrons at Nonzero Density and Temperature

    Full text link
    We study the Green's function of a gauge invariant fermionic operator in a strongly coupled field theory at nonzero temperature and density using a dual gravity description. The gravity model contains a charged black hole in four dimensional anti-de Sitter space and probe charged fermions. In particular, we consider the effects of the spin of these probe fermions on the properties of the Green's function. There exists a spin-orbit coupling between the spin of an electron and the electric field of a Reissner-Nordstrom black hole. On the field theory side, this coupling leads to a Rashba like dispersion relation. We also study the effects of spin on the damping term in the dispersion relation by considering how the spin affects the placement of the fermionic quasinormal modes in the complex frequency plane in a WKB limit. An appendix contains some exact solutions of the Dirac equation in terms of Heun polynomials.Comment: 27 pages, 11 figures; v2: minor changes, published versio

    Monopoles and Holography

    Full text link
    We present a holographic theory in AdS_4 whose zero temperature ground state develops a crystal structure, spontaneously breaking translational symmetry. The crystal is induced by a background magnetic field, but requires no chemical potential. This lattice arises from the existence of 't Hooft-Polyakov monopole solitons in the bulk which condense to form a classical object known as a monopole wall. In the infra-red, the magnetic field is screened and there is an emergent SU(2) global symmetry.Comment: 33 pages, 16 figures; v2: ref adde

    Shear Modes, Criticality and Extremal Black Holes

    Full text link
    We consider a (2+1)-dimensional field theory, assumed to be holographically dual to the extremal Reissner-Nordstrom AdS(4) black hole background, and calculate the retarded correlators of charge (vector) current and energy-momentum (tensor) operators at finite momentum and frequency. We show that, similar to what was observed previously for the correlators of scalar and spinor operators, these correlators exhibit emergent scaling behavior at low frequency. We numerically compute the electromagnetic and gravitational quasinormal frequencies (in the shear channel) of the extremal Reissner-Nordstrom AdS(4) black hole corresponding to the spectrum of poles in the retarded correlators. The picture that emerges is quite simple: there is a branch cut along the negative imaginary frequency axis, and a series of isolated poles corresponding to damped excitations. All of these poles are always in the lower half complex frequency plane, indicating stability. We show that this analytic structure can be understood as the proper limit of finite temperature results as T is taken to zero holding the chemical potential fixed.Comment: 28 pages, 7 figures, added reference

    Holographic models for undoped Weyl semimetals

    Full text link
    We continue our recently proposed holographic description of single-particle correlation functions for four-dimensional chiral fermions with Lifshitz scaling at zero chemical potential, paying particular attention to the dynamical exponent z = 2. We present new results for the spectral densities and dispersion relations at non-zero momenta and temperature. In contrast to the relativistic case with z = 1, we find the existence of a quantum phase transition from a non-Fermi liquid into a Fermi liquid in which two Fermi surfaces spontaneously form, even at zero chemical potential. Our findings show that the boundary system behaves like an undoped Weyl semimetal.Comment: 64 pages, 19 figure

    Universal properties of thermal and electrical conductivity of gauge theory plasmas from holography

    Full text link
    We propose that for conformal field theories admitting gravity duals, the thermal conductivity is fixed by the central charges in a universal manner. Though we do not have a proof as yet, we have checked our proposal against several examples. This proposal, if correct, allows us to express electrical conductivity in terms of thermodynamical quantities even in the presence of chemical potential.Comment: 13 pages, appendix added, close to journal versio

    Semi-local quantum liquids

    Get PDF
    Gauge/gravity duality applied to strongly interacting systems at finite density predicts a universal intermediate energy phase to which we refer as a semi-local quantum liquid. Such a phase is characterized by a finite spatial correlation length, but an infinite correlation time and associated nontrivial scaling behavior in the time direction, as well as a nonzero entropy density. For a holographic system at a nonzero chemical potential, this unstable phase sets in at an energy scale of order of the chemical potential, and orders at lower energies into other phases; examples include superconductors and antiferromagnetic-type states. In this paper we give examples in which it also orders into Fermi liquids of "heavy" fermions. While the precise nature of the lower energy state depends on the specific dynamics of the individual system, we argue that the semi-local quantum liquid emerges universally at intermediate energies through deconfinement (or equivalently fractionalization). We also discuss the possible relevance of such a semi-local quantum liquid to heavy electron systems and the strange metal phase of high temperature cuprate superconductors.Comment: 31 pages, 7 figure
    corecore