4,199 research outputs found
Promyelocytic leukemia nuclear bodies associate with transcriptionally active genomic regions
Cancer Research UK
A G-quadruplex-binding compound showing anti-tumour activity in an in vivo model for pancreatic cancer
We report here that a tetra-substituted naphthalene-diimide derivative (MM41) has significant in vivo anti-tumour activity against the MIA PaCa-2 pancreatic cancer xenograft model. IV administration with a twice-weekly 15 mg/kg dose produces ca 80% tumour growth decrease in a group of tumour-bearing animals. Two animals survived tumour-free after 279 days. High levels of MM41 are rapidly transported into cell nuclei and were found to accumulate in the tumour. MM41 is a quadruplex-interactive compound which binds strongly to the quadruplexes encoded in the promoter sequences of the BCL-2 and k-RAS genes, both of which are dis-regulated in many human pancreatic cancers. Levels of BCL-2 were reduced by ca 40% in tumours from MM41-treated animals relative to controls, consistent with BCL-2 being a target for MM41. Molecular modelling suggests that MM41 binds to a BCL-2 quadruplex in a manner resembling that previously observed in co-crystal structures with human telomeric quadruplexes. This supports the concept that MM41 (and by implication other quadruplex-targeting small molecules) can bind to quadruplex-forming promoter regions in a number of genes and down-regulate their transcription. We suggest that quadruplexes within those master genes that are up-regulated drivers for particular cancers, may be selective targets for compounds such as MM41
Genome wide association mapping of grain arsenic, copper, molybdenum and zinc in rice (Oryza sativa L.) grown at four international field sites
Peer reviewedPublisher PD
Strength development characteristics of concrete produced with blended cement using Ground Granulated Blast furnace Slag (GGBS) under various curing conditions
Normalizing single-cell RNA sequencing data: challenges and opportunities
Single-cell transcriptomics is becoming an important component of the molecular biologist's toolkit. A critical step when analyzing data generated using this technology is normalization. However, normalization is typically performed using methods developed for bulk RNA sequencing or even microarray data, and the suitability of these methods for single-cell transcriptomics has not been assessed. We here discuss commonly used normalization approaches and illustrate how these can produce misleading results. Finally, we present alternative approaches and provide recommendations for single-cell RNA sequencing users
Interleukin-6 gene (IL-6): a possible role in brain morphology in the healthy adult brain
Background: Cytokines such as interleukin 6 (IL-6) have been implicated in dual functions in neuropsychiatric disorders. Little is known about the genetic predisposition to neurodegenerative and neuroproliferative properties of cytokine genes. In this study the potential dual role of several IL-6 polymorphisms in brain morphology is investigated. Methodology: In a large sample of healthy individuals (N = 303), associations between genetic variants of IL-6 (rs1800795; rs1800796, rs2069833, rs2069840) and brain volume (gray matter volume) were analyzed using voxel-based morphometry (VBM). Selection of single nucleotide polymorphisms (SNPs) followed a tagging SNP approach (e.g., Stampa algorigthm), yielding a capture 97.08% of the variation in the IL-6 gene using four tagging SNPs. Principal findings/results: In a whole-brain analysis, the polymorphism rs1800795 (−174 C/G) showed a strong main effect of genotype (43 CC vs. 150 CG vs. 100 GG; x = 24, y = −10, z = −15; F(2,286) = 8.54, puncorrected = 0.0002; pAlphaSim-corrected = 0.002; cluster size k = 577) within the right hippocampus head. Homozygous carriers of the G-allele had significantly larger hippocampus gray matter volumes compared to heterozygous subjects. None of the other investigated SNPs showed a significant association with grey matter volume in whole-brain analyses. Conclusions/significance: These findings suggest a possible neuroprotective role of the G-allele of the SNP rs1800795 on hippocampal volumes. Studies on the role of this SNP in psychiatric populations and especially in those with an affected hippocampus (e.g., by maltreatment, stress) are warranted.Bernhard T Baune, Carsten Konrad, Dominik Grotegerd, Thomas Suslow, Eva Birosova, Patricia Ohrmann, Jochen Bauer, Volker Arolt, Walter Heindel, Katharina Domschke, Sonja Schöning, Astrid V Rauch, Christina Uhlmann, Harald Kugel and Udo Dannlowsk
An Amorphous Alloy Magnetic-Bus-Based SiC NPC Converter with Inherent Voltage Balancing for Grid-Connected Renewable Energy Systems
© 2002-2011 IEEE. This paper presents an amorphous alloy magnetic-bus-based neutral point clamped (NPC) converter for grid-connected renewable generation systems. In the proposed system, the amorphous alloy high-frequency high-power density multi-winding magnetic bus generates balanced dc supplies for the five-level (5L) NPC converter for high-quality power conversion. Compared to the traditional NPC converter topologies, the proposed magnetic-bus-based architecture does not require any control circuit for voltage balancing of the series connected capacitors. The magnetic bus inherently overcomes galvanic isolation issues and may reduce the size of the boosting inductor. In this paper, a finite control set model predictive control algorithm is derived to control the grid-connected 5L-NPC inverter for multilevel voltage synthesizing, while achieving the user-defined active and reactive power values. To verify the proposed concept, a simulation model is developed and analyzed in MATLAB/Simulink environment. To validate the technology, a scale d-down prototype test platform is developed in the laboratory with silicon carbide switching devices, which achieves high blocking voltage, low power dissipation, high switching frequency, and high-Temperature operation. Based on the simulation and the experimental results, it is expected that the proposed converter will have a great potential for widespread application in renewable generation systems including superconducting generator-based wind turbines
A New Isolated Multi-Port Converter With Multi-Directional Power Flow Capabilities for Smart Electric Vehicle Charging Stations
© 2018 IEEE. If the batteries are charged by clean renewable energy sources, electric vehicles (EVs) can have zero gas emission, contributing greatly toward the preservation of the green environment. In a smart micro-grid, EVs together with other distributed energy storage units can be used to supply electricity to the loads during the peak hours so as to minimize the effects of the load shedding and improve the quality of electricity. To achieve these goals, an isolated hybrid multi-port converter is required to control the power flows and balance the energy among renewable energy sources, EVs, and the grid. In this paper, a new isolated multi-port converter is proposed, which can control the power flow in multiple directions. The converter is modeled in the matlab/Simulink software environment and this validates the technology with a laboratory prototype test platform. The modeling, implementation, and results are discussed comprehensively
The Formation and Evolution of the First Massive Black Holes
The first massive astrophysical black holes likely formed at high redshifts
(z>10) at the centers of low mass (~10^6 Msun) dark matter concentrations.
These black holes grow by mergers and gas accretion, evolve into the population
of bright quasars observed at lower redshifts, and eventually leave the
supermassive black hole remnants that are ubiquitous at the centers of galaxies
in the nearby universe. The astrophysical processes responsible for the
formation of the earliest seed black holes are poorly understood. The purpose
of this review is threefold: (1) to describe theoretical expectations for the
formation and growth of the earliest black holes within the general paradigm of
hierarchical cold dark matter cosmologies, (2) to summarize several relevant
recent observations that have implications for the formation of the earliest
black holes, and (3) to look into the future and assess the power of
forthcoming observations to probe the physics of the first active galactic
nuclei.Comment: 39 pages, review for "Supermassive Black Holes in the Distant
Universe", Ed. A. J. Barger, Kluwer Academic Publisher
Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector
Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
- …
