25,073 research outputs found
Block-block entanglement and quantum phase transitions in one-dimensional extended Hubbard model
In this paper, we study block-block entanglement in the ground state of
one-dimensional extended Hubbard model. Our results show that the phase diagram
derived from the block-block entanglement manifests richer structure than that
of the local (single site) entanglement because it comprises nonlocal
correlation. Besides phases characterized by the charge-density-wave, the
spin-density-wave, and phase-separation, which can be sketched out by the local
entanglement, singlet superconductivity phase could be identified on the
contour map of the block-block entanglement. Scaling analysis shows that behavior of the block-block entanglement may exist in both
non-critical and the critical regions, while some local extremum are induced by
the finite-size effect. We also study the block-block entanglement defined in
the momentum space and discuss its relation to the phase transition from
singlet superconducting state to the charge-density-wave state.Comment: 8 pages, 9 figure
Entanglement and quantum phase transition in the extended Hubbard model
We study quantum entanglement in one-dimensional correlated fermionic system.
Our results show, for the first time, that entanglement can be used to identify
quantum phase transitions in fermionic systems.Comment: 5 pages, 4 figure
Energy and centrality dependences of charged multiplicity density in relativistic nuclear collisions
Using a hadron and string cascade model, JPCIAE, the energy and centrality
dependences of charged particle pseudorapidity density in relativistic nuclear
collisions were studied. Within the framework of this model, both the
relativistic experimental data and the PHOBOS and PHENIX
data at =130 GeV could be reproduced fairly well without retuning
the model parameters. The predictions for full RHIC energy collisions
and for collisions at the ALICE energy were given. Participant nucleon
distributions were calculated based on different methods. It was found that the
number of participant nucleons, for distinguishing various theoretical models.Comment: 10 pages, 4 figures, submitted to Phy. Lett.
PACIAE 2.0: An updated parton and hadron cascade model (program) for the relativistic nuclear collisions
We have updated the parton and hadron cascade model PACIAE for the
relativistic nuclear collisions, from based on JETSET 6.4 and PYTHIA 5.7 to
based on PYTHIA 6.4, and renamed as PACIAE 2.0. The main physics concerning the
stages of the parton initiation, parton rescattering, hadronization, and hadron
rescattering were discussed. The structures of the programs were briefly
explained. In addition, some calculated examples were compared with the
experimental data. It turns out that this model (program) works well.Comment: 23 pages, 7 figure
Charged particle elliptic flow in p+p collisions at LHC energies in a transport model PACIAE
The parton and hadron cascade model PACIAE based on PYTHIA was used to
investigate the charged particle elliptic flow in minimum bias pp collisions at
the LHC energies. The strings were distributed randomly in the transverse
ellipsoid of the pp collision system with major axis of (proton radius) and
minor axis of before parton rescattering. The charged particle
elliptic flow as a function of the random number and transverse momentum
were investigated. The calculated as a function of
reaction energy increases monotonously with increasing reaction energy up to
7 TeV and then turns to saturation. With the parton-parton cross
section enlarges three times in parton rescattering, the rapidity integrated
charged particle elliptic flow may reach 0.025 at 2 GeV/c in the
minimum bias pp collisions at =7 TeV.Comment: 7 pages, 4 figure
Recommended from our members
Hydrocarbon ratios during PEM-WEST A: A model perspective
A useful application of the hydrocarbon measurements collected during the Pacific Exploratory Mission (PEM-West A) is as markers or indices of atmospheric processing. Traditionally, ratios of particular hydrocarbons have been interpreted as photochemical indices, since much of the effect due to atmospheric transport is assumed to cancel by using ratios. However, an ever increasing body of observatonial and theoretical evidence suggests that turbulent mixing associated with atmospheric transport influences certain hydrocarbon ratios significantly. In this study a three-dimensional mesoscale photochemical model is used to study the interaction of photochemistry and atmospheric mixing on select hydrocarbons. In terms of correlations and functional relationships between various alkanes the model results and PEM-West A hydrocarbon observations share many similar characteristics as well as explainable differences. When the three-dimensional model is applied to inert tracers, hydrocarbon ratios and other relationships exactly follow those expected by simple dilution with model-imposed "background air," and the three-dimensional results for reactive hydrocarbons are quite consistent with a combined influence of photochemistry and simple dilution. Analogous to these model results, relationships between various hydrocarbons collected during the PEM-West A experiment appear to be consistent with this simplified picture of photochemistry and dilution affecting individual air masses. When hydrocarbons are chosen that have negligeble contributions to clean background air, unambiguous determinations of the relative contributions to photochemistry and dilution can be estimated from the hydrocarbon samples. Both the three-dimensional model results and the observations imply an average characteristic lifetime for dilution with background air roughly equivalent to the photochemical lifetime of butane for the western Pacific lower troposphere. Moreover, the dominance of OH as the primary photochemical oxidant downwind of anthropogenic source regions can be inferred from correlations between the highly reactive alkane ratios. By incorporating back-trajectory information within the three-dimensional model analysis, a correspondence between time and a particular hydrocarbon or hydrocarbon ratio can be determined, and the influence of atmospheric mixing or photochemistry can be quantified. Results of the three-dimensional model study are compared and applied to the PEM-West A hydrocarbon dataset, yielding a practical methodology for determining average OH concentrations and atmospheric mixing rates from the hydrocarbon measurements. Aircraft data taken below 2 km during wall flights east of Japan imply a diurnal average OH concentration of ∼3 × 106 cm-3. The characteristic time for dilution with background air is estimated to be ∼2.5 days for the two study areas examined in this work. Copyright 1996 by the American Geophysical Union
absorption in hadronic matter
The cross sections of absorption by and mesons are
evaluated in a meson-exchange model. Including form factors with a cutoff
parameter of 1 or 2 GeV, we find that due to the large threshold of these
reactions the thermal average of their cross sections is only about 0.2 mb at a
temperature of 150 MeV. Our results thus suggest that the absorption of
directly produced by hadronic comovers in high energy heavy ion
collisions is unimportant.Comment: 11 pages, revtex, 3 figures, added references and discussion on
higher BBbar state
Recommended from our members
Model study of tropospheric trace species distributions during PEM-West A
A three-dimensional mesoscale transport/photochemical model is used to study the transport and photochemical transformation of trace species over eastern Asia and western Pacific for the period from September 20 to October 6, 1991, of the Pacific Exploratory Mission-West A experiment. The influence of emissions from the continental boundary layer that was evident in the observed trace species distributions in the lower troposphere over the ocean is well simulated by the model. In the upper troposphere, species such as O3, NOy (total reactive nitrogen species), and SO2 which have a significant source in the stratosphere are also simulated well in the model, suggesting that the upper tropospheric abundances of these species are strongly influenced by stratospheric fluxes and upper tropospheric sources. In the case of SO2 the stratospheric flux is identified to be mostly from the Mount Pinatubo eruption. Concentrations in the upper troposphere for species such as CO and hydrocarbons, which are emitted in the continental boundary layer and have a sink in the troposphere, are significantly underestimated by the model. Two factors have been identified to contribute significantly to the underestimate: one is emissions upwind of the model domain (eastern Asia and western Pacific); the other is that vertical transport is underestimated in the model. Model results are also grouped by back trajectories to study the contrast between compositions of marine and continental air masses. The model-calculated altitude profiles of trace species in continental and marine air masses are found to be qualitatively consistent with observations. However, the difference in the median values of trace species between continental air and marine air is about twice as large for the observed values as for model results. This suggests that the model underestimates the outflow fluxes of trace species from the Asian continent and the Pacific rim countries to the ocean. Observed altitude profiles for species like CO and hydrocarbons show a negative gradient in continental air and a positive gradient in marine air. A mechanism which may be responsible for the altitude gradients is proposed
Faint young Sun paradox remains
The Sun was fainter when the Earth was young, but the climate was generally
at least as warm as today; this is known as the `faint young Sun paradox'.
Rosing et al. [1] claim that the paradox can be resolved by making the early
Earth's clouds and surface less reflective. We show that, even with the
strongest plausible assumptions, reducing cloud and surface albedos falls short
by a factor of two of resolving the paradox. A temperate Archean climate cannot
be reconciled with the low level of CO2 suggested by Rosing et al. [1]; a
stronger greenhouse effect is needed.Comment: 3 pages, no figures. In press in Nature. v2 corrects typo in author
list in original submissio
- …
