21,563 research outputs found

    An Excursion into the Statistical Properties of Hedge Funds

    Get PDF
    This paper provides an overview of the most important statistical properties of individual hedge fund returns. We find that the net-of-fees monthly returns of the average individual hedge fund exhibit significant degrees of negative skewness, excess kurtosis, as well as positive first-order serial correlation. The correlations between hedge funds in the same strategy group are of the same order of magnitude as the correlations between funds in different strategy groups and relatively low. Only 10-20% of the variation in the average individual hedge fund’s returns can be explained by what happens in the US equity and bond markets. Compared to individual funds, portfolios of hedge funds tend to exhibit lower skewness, higher serial correlation and higher correlation with stocks and bonds. Movements in the US equity and bond markets still only explain 20-40% of the variation in hedge fund portfolios returns though. Finally, an equally-weighted portfolio of all funds in our sample offers a 2.76% higher mean return than the average fund of funds. This strongly suggests that the timing and fund picking activities of the average fund of funds are not rewarded by a higher return.

    Open String Creation by S-Branes

    Get PDF
    An sp-brane can be viewed as the creation and decay of an unstable D(p+1)-brane. It is argued that the decaying half of an sp-brane can be described by a variant of boundary Liouville theory. The pair creation of open strings by a decaying s-brane is studied in the minisuperspace approximation to the Liouville theory. In this approximation a Hagedorn-like divergence is found in the pair creation rate, suggesting the s-brane energy is rapidly transferred into closed string radiation.Comment: Talk presented at the Hangzhou String 2002 Conference, August 12-1

    Casimir Effect for the Piecewise Uniform String

    Full text link
    The Casimir energy for the transverse oscillations of a piecewise uniform closed string is calculated. In its simplest version the string consists of two parts I and II having in general different tension and mass density, but is always obeying the condition that the velocity of sound is equal to the velocity of light. The model, first introduced by Brevik and Nielsen in 1990, possesses attractive formal properties implying that it becomes easily regularizable by several methods, the most powerful one being the contour integration method. We also consider the case where the string is divided into 2N pieces, of alternating type-I and type-II material. The free energy at finite temperature, as well as the Hagedorn temperature, are found. Finally, we make some remarks on the relationship between this kind of theory and the theory of quantum star graphs, recently considered by Fulling et al.Comment: 10 pages, 1 figure, Submitted to the volume "Cosmology, Quantum Vacuum, and Zeta Functions", in honour of Professor Emilio Elizalde on the occasion of his 60th birthda

    Experimental Measurement of the Berry Curvature from Anomalous Transport

    Full text link
    Geometrical properties of energy bands underlie fascinating phenomena in a wide-range of systems, including solid-state materials, ultracold gases and photonics. Most famously, local geometrical characteristics like the Berry curvature can be related to global topological invariants such as those classifying quantum Hall states or topological insulators. Regardless of the band topology, however, any non-zero Berry curvature can have important consequences, such as in the semi-classical evolution of a wave packet. Here, we experimentally demonstrate for the first time that wave packet dynamics can be used to directly map out the Berry curvature. To this end, we use optical pulses in two coupled fibre loops to study the discrete time-evolution of a wave packet in a 1D geometrical "charge" pump, where the Berry curvature leads to an anomalous displacement of the wave packet under pumping. This is both the first direct observation of Berry curvature effects in an optical system, and, more generally, the proof-of-principle demonstration that semi-classical dynamics can serve as a high-resolution tool for mapping out geometrical properties

    Proton irradiation effect on SCDs

    Full text link
    The Low Energy X-ray Telescope is a main payload on the Hard X-ray Modulation Telescope satellite. The swept charge device is selected for the Low Energy X-ray Telescope. As swept charge devices are sensitive to proton irradiation, irradiation test was carried out on the HI-13 accelerator at the China Institute of Atomic Energy. The beam energy was measured to be 10 MeV at the SCD. The proton fluence delivered to the SCD was 3×108protons/cm23\times10^{8}\mathrm{protons}/\mathrm{cm}^{2} over two hours. It is concluded that the proton irradiation affects both the dark current and the charge transfer inefficiency of the SCD through comparing the performance both before and after the irradiation. The energy resolution of the proton-irradiated SCD is 212 [email protected] keV at 60C-60\,^{\circ}\mathrm{C}, while it before irradiated is 134 eV. Moreover, better performance can be reached by lowering the operating temperature of the SCD on orbit

    Three geographically separate domestications of Asian rice

    Get PDF
    Domesticated rice (Oryza sativa L.) accompanied the dawn of Asian civilization(1) and has become one of world's staple crops. From archaeological and genetic evidence various contradictory scenarios for the origin of different varieties of cultivated rice have been proposed, the most recent based on a single domestication(2,3). By examining the footprints of selection in the genomes of different cultivated rice types, we show that there were three independent domestications in different parts of Asia. We identify wild populations in southern China and the Yangtze valley as the source of the japonica gene pool, and populations in Indochina and the Brahmaputra valley as the source of the indica gene pool. We reveal a hitherto unrecognized origin for the aus variety in central India or Bangladesh. We also conclude that aromatic rice is a result of a hybridization between japonica and aus, and that the tropical and temperate versions of japonica are later adaptations of one crop. Our conclusions are in accord with archaeological evidence that suggests widespread origins of rice cultivation(1,4). We therefore anticipate that our results will stimulate a more productive collaboration between genetic and archaeological studies of rice domestication, and guide utilization of genetic resources in breeding programmes aimed at crop improvement.European Research Council [339941]info:eu-repo/semantics/publishedVersio

    Δ\Delta-scaling and Information Entropy in Ultra-Relativistic Nucleus-Nucleus Collisions

    Full text link
    The Δ\Delta-scaling method has been applied to ultra-relativistic p+p, C+C and Pb+Pb collision data simulated using a high energy Monte Carlo package, LUCIAE 3.0. The Δ\Delta-scaling is found to be valid for some physical variables, such as charged particle multiplicity, strange particle multiplicity and number of binary nucleon-nucleon collisions from these simulated nucleus-nucleus collisions over an extended energy ranging from ElabE_{lab} = 20 to 200 A GeV. In addition we derived information entropy from the multiplicity distribution as a function of beam energy for these collisions.Comment: 4 pages, 4 figures, 1 table; to appear in the July Issue of Chin. Phys. Lett.. Web Page: http://www.iop.org/EJ/journal/CP

    Applying Unique Molecular Identifiers in Next Generation Sequencing Reveals a Constrained Viral Quasispecies Evolution under Cross-Reactive Antibody Pressure Targeting Long Alpha Helix of Hemagglutinin.

    Get PDF
    To overcome yearly efforts and costs for the production of seasonal influenza vaccines, new approaches for the induction of broadly protective and long-lasting immune responses have been developed in the past decade. To warrant safety and efficacy of the emerging crossreactive vaccine candidates, it is critical to understand the evolution of influenza viruses in response to these new immune pressures. Here we applied unique molecular identifiers in next generation sequencing to analyze the evolution of influenza quasispecies under in vivo antibody pressure targeting the hemagglutinin (HA) long alpha helix (LAH). Our vaccine targeting LAH of hemagglutinin elicited significant seroconversion and protection against homologous and heterologous influenza virus strains in mice. The vaccine not only significantly reduced lung viral titers, but also induced a well-known bottleneck effect by decreasing virus diversity. In contrast to the classical bottleneck effect, here we showed a significant increase in the frequency of viruses with amino acid sequences identical to that of vaccine targeting LAH domain. No escape mutant emerged after vaccination. These results not only support the potential of a universal influenza vaccine targeting the conserved LAH domains, but also clearly demonstrate that the well-established bottleneck effect on viral quasispecies evolution does not necessarily generate escape mutants

    In Situ Ambient Pressure X-ray Photoelectron Spectroscopy Studies of Lithium-Oxygen Redox Reactions

    Get PDF
    The lack of fundamental understanding of the oxygen reduction and oxygen evolution in nonaqueous electrolytes significantly hinders the development of rechargeable lithium-air batteries. Here we employ a solid-state Li4+xTi5O12/LiPON/LixV2O5 cell and examine in situ the chemistry of Li-O2 reaction products on LixV2O5 as a function of applied voltage under ultra high vacuum (UHV) and at 500 mtorr of oxygen pressure using ambient pressure X-ray photoelectron spectroscopy (APXPS). Under UHV, lithium intercalated into LixV2O5 while molecular oxygen was reduced to form lithium peroxide on LixV2O5 in the presence of oxygen upon discharge. Interestingly, the oxidation of Li2O2 began at much lower overpotentials (~240 mV) than the charge overpotentials of conventional Li-O2 cells with aprotic electrolytes (~1000 mV). Our study provides the first evidence of reversible lithium peroxide formation and decomposition in situ on an oxide surface using a solid-state cell, and new insights into the reaction mechanism of Li-O2 chemistry.National Science Foundation (U.S.) (Materials Research Science and Engineering Center (MRSEC) Program, Award DMR-0819762)United States. Dept. of Energy (Assistant Secretary for Energy Efficiency and Renewable Energy, Office of FreedomCAR and Vehicle Technologies of the U. S. Department of Energy under contract no. DE-AC03-76SF00098)Lawrence Berkeley National LaboratoryUnited States. Dept. of Energy (Office of Basic Energy Sciences, Materials Sciences and Engineering
    corecore