350 research outputs found
Massive stars as thermonuclear reactors and their explosions following core collapse
Nuclear reactions transform atomic nuclei inside stars. This is the process
of stellar nucleosynthesis. The basic concepts of determining nuclear reaction
rates inside stars are reviewed. How stars manage to burn their fuel so slowly
most of the time are also considered. Stellar thermonuclear reactions involving
protons in hydrostatic burning are discussed first. Then I discuss triple alpha
reactions in the helium burning stage. Carbon and oxygen survive in red giant
stars because of the nuclear structure of oxygen and neon. Further nuclear
burning of carbon, neon, oxygen and silicon in quiescent conditions are
discussed next. In the subsequent core-collapse phase, neutronization due to
electron capture from the top of the Fermi sea in a degenerate core takes
place. The expected signal of neutrinos from a nearby supernova is calculated.
The supernova often explodes inside a dense circumstellar medium, which is
established due to the progenitor star losing its outermost envelope in a
stellar wind or mass transfer in a binary system. The nature of the
circumstellar medium and the ejecta of the supernova and their dynamics are
revealed by observations in the optical, IR, radio, and X-ray bands, and I
discuss some of these observations and their interpretations.Comment: To be published in " Principles and Perspectives in Cosmochemistry"
Lecture Notes on Kodai School on Synthesis of Elements in Stars; ed. by Aruna
Goswami & Eswar Reddy, Springer Verlag, 2009. Contains 21 figure
Frequency-specific hippocampal-prefrontal interactions during associative learning
Much of our knowledge of the world depends on learning associations (for example, face-name), for which the hippocampus (HPC) and prefrontal cortex (PFC) are critical. HPC-PFC interactions have rarely been studied in monkeys, whose cognitive and mnemonic abilities are akin to those of humans. We found functional differences and frequency-specific interactions between HPC and PFC of monkeys learning object pair associations, an animal model of human explicit memory. PFC spiking activity reflected learning in parallel with behavioral performance, whereas HPC neurons reflected feedback about whether trial-and-error guesses were correct or incorrect. Theta-band HPC-PFC synchrony was stronger after errors, was driven primarily by PFC to HPC directional influences and decreased with learning. In contrast, alpha/beta-band synchrony was stronger after correct trials, was driven more by HPC and increased with learning. Rapid object associative learning may occur in PFC, whereas HPC may guide neocortical plasticity by signaling success or failure via oscillatory synchrony in different frequency bands.National Institute of Mental Health (U.S.) (Conte Center Grant P50-MH094263-03)National Institute of Mental Health (U.S.) (Fellowship F32-MH081507)Picower Foundatio
Prescribed medicine use and extent of off-label use according to age in a nationwide sample of Australian children
Background: Medicine prescribing for children is impacted by a lack of paediatric-specific dosing, efficacy and safety data for many medicines. Objectives: To estimate the prevalence of medicine use among children and the rate of ‘off-label’ prescribing according to age at dispensing. Methods: We used population-wide primarily outpatient dispensing claims data for 15% of Australian children (0–17 years), 2013–2017 (n = 840,190). We estimated prescribed medicine use and ‘off-label’ medicine use according to the child's age (<1 year, 1–5 years, 6–11 years, 12–17 years) defined as medicines without age-appropriate dose recommendations in regulator-approved product information. Within off-label medicines, we also identified medicines with and without age-specific dose recommendations in a national prescribing guide, the Australian Medicines Handbook Children's Dosing Companion (AMH CDC). Results: The overall dispensing rate was 2.0 dispensings per child per year. The medicines with the highest average yearly prevalence were systemic antibiotics (435.3 per 1000 children), greatest in children 1–5 years (546.9 per 1000). Other common medicine classes were systemic corticosteroids (92.7 per 1000), respiratory medicines (91.2 per 1000), acid-suppressing medicines in children <1 year (47.2 per 1000), antidepressants in children 12–17 years (40.3 per 1000) and psychostimulants in children 6–11 years (27.0 per 1000). We identified 12.2% of dispensings as off-label based on age, but 66.3% of these had age-specific dosing recommendations in the AMH CDC. Among children <1 year, off-label dispensings were commonly acid-suppressing medicines (35.5%) and topical hydrocortisone (33.1%); in children 6–11 years, off-label prescribing of clonidine (16.0%) and risperidone (13.1%) was common. Off-label dispensings were more likely to be prescribed by a specialist (21.7%) than on-label dispensings (7.5%). Conclusions: Prescribed medicine use is common in children, with off-label dispensings for medicines without paediatric-specific dosing guidelines concentrated in classes such as acid-suppressing medicines and psychotropics. Our findings highlight a need for better evidence to support best-practice prescribing
Children's Relative Age and Medicine Treatment for Attention-Deficit/Hyperactivity Disorder Across Australian Jurisdictions with Different School Enrolment Policies
Background: Children who are relatively young for their school grade are more likely to receive treatment for attention-deficit/hyperactivity disorder (ADHD). It is unclear whether the phenomenon also exists across Australia or is impacted by the school enrolment policy in place. Objective: We evaluated the association between children's relative age and initiation of ADHD medicines across Australian jurisdictions with different school enrolment policies and rates of delayed school entry. Methods: We used Australia-wide dispensing data for a 15% random sample of children 4-9 years of age in 2013-2017 to create a nationwide cohort. Due to high rates of delayed school entry in New South Wales (NSW), we used linked prescribing and education data for a cohort of NSW residents starting school in 2009 and 2012. We estimated incidence rate ratios (IRRs) for ADHD medicine across children's birth month, sex, and jurisdiction. We used asthma medicines as a negative control. Results: For girls, we observed a relative age effect in three out of five jurisdictions, with an IRR ranging from 1.3 to 2.8, comparing the youngest versus oldest birth month thirds. We observed more modest effects among boys, ranging from null to 1.5-fold. In NSW, the relatively youngest boys were less likely to initiate stimulant medicines than the oldest (IRR = 0.5, 95% confidence interval 0.29-0.78). We did not observe a relative age effect for initiation of asthma medicines. Conclusions: In jurisdictions with low rates of delayed entry, relatively young children were more likely to initiate ADHD medicines than their older classmates. We observed the inverse association in NSW where delayed entry was highest, likely reflecting the characteristics and needs of children who delay school entry for 1 year and become the oldest children in the grade. Increased awareness around children's maturity differences and school readiness may enhance appropriate diagnosis and treatment of ADHD
High proportion of cactus species threatened with extinction
This is the author accepted manuscript. The final version is available from Nature Publishing Group via the DOI in this record.Consejo Nacional de Ciencia y Tecnologí
Identification of Molecular Pathologies Sufficient to Cause Neuropathic Excitability in Primary Somatosensory Afferents Using Dynamical Systems Theory
Pain caused by nerve injury (i.e. neuropathic pain) is associated with development of neuronal hyperexcitability at several points along the pain pathway. Within primary afferents, numerous injury-induced changes have been identified but it remains unclear which molecular changes are necessary and sufficient to explain cellular hyperexcitability. To investigate this, we built computational models that reproduce the switch from a normal spiking pattern characterized by a single spike at the onset of depolarization to a neuropathic one characterized by repetitive spiking throughout depolarization. Parameter changes that were sufficient to switch the spiking pattern also enabled membrane potential oscillations and bursting, suggesting that all three pathological changes are mechanistically linked. Dynamical analysis confirmed this prediction by showing that excitability changes co-develop when the nonlinear mechanism responsible for spike initiation switches from a quasi-separatrix-crossing to a subcritical Hopf bifurcation. This switch stems from biophysical changes that bias competition between oppositely directed fast- and slow-activating conductances operating at subthreshold potentials. Competition between activation and inactivation of a single conductance can be similarly biased with equivalent consequences for excitability. “Bias” can arise from a multitude of molecular changes occurring alone or in combination; in the latter case, changes can add or offset one another. Thus, our results identify pathological change in the nonlinear interaction between processes affecting spike initiation as the critical determinant of how simple injury-induced changes at the molecular level manifest complex excitability changes at the cellular level. We demonstrate that multiple distinct molecular changes are sufficient to produce neuropathic changes in excitability; however, given that nerve injury elicits numerous molecular changes that may be individually sufficient to alter spike initiation, our results argue that no single molecular change is necessary to produce neuropathic excitability. This deeper understanding of degenerate causal relationships has important implications for how we understand and treat neuropathic pain
Invasive micropapillary carcinomas arising 42 years after augmentation mammoplasty: A case report and literature review
Association Rate Constants of Ras-Effector Interactions Are Evolutionarily Conserved
Evolutionary conservation of protein interaction properties has been shown to be a valuable indication for functional importance. Here we use homology interface modeling of 10 Ras-effector complexes by selecting ortholog proteins from 12 organisms representing the major eukaryotic branches, except plants. We find that with increasing divergence time the sequence similarity decreases with respect to the human protein, but the affinities and association rate constants are conserved as predicted by the protein design algorithm, FoldX. In parallel we have done computer simulations on a minimal network based on Ras-effector interactions, and our results indicate that in the absence of negative feedback, changes in kinetics that result in similar binding constants have strong consequences on network behavior. This, together with the previous results, suggests an important biological role, not only for equilibrium binding constants but also for kinetics in signaling processes involving Ras-effector interactions. Our findings are important to take into consideration in system biology approaches and simulations of biological networks
Metastasis to the breast from an adenocarcinoma of the lung with extensive micropapillary component: a case report and review of the literature
Breast metastasis from extra-mammary malignancy is rare. Based on the literature an incidence of 0.4-1.3% is reported. The primary malignancies most commonly metastasizing to the breast are leukemia-lymphoma, and malignant melanoma. We present a case of metastasis to the breast from a pulmonary adenocarcinoma, with extensive micropapillary component, diagnosed concomitantly with the primary tumor. A 73-year-old female presented with dyspnea and dry cough of 4 weeks duration and a massive pleural effusion was found on a chest radiograph. Additionally, on physical examination a poorly defined mass was noted in the upper outer quadrant of the left breast. The patient underwent bronchoscopy, excisional breast biopsy and medical thoracoscopy. By cytology, histology and immunohistochemistry primary lung adenocarcinoma with metastasis to the breast and parietal pleura was diagnosed. Both the primary and metastatic anatomic sites demonstrated histologically extensive micropapillary component, which is recently recognized as an important prognostic factor. The patient received chemotherapy but passed away within 7 months. Accurate differentiation of metastatic from primary carcinoma is of crucial importance because the treatment and prognosis differ significantly
Introducing integrated laboratory classes in a PBL curriculum: impact on student’s learning and satisfaction
- …
