2,668 research outputs found
Recent Progress in Neutron Star Theory
This review contains chapters discussing: Energy density fluctionals of
nuclear matter, Many-body theory of nucleon matter, Hadronic and quark matter,
Mixtures of phases in dense matter, Neutron star observations and predictions.Comment: 33 pages +13 figs., Ann. Rev. Nucl. & Part. Science, 200
A soliton menagerie in AdS
We explore the behaviour of charged scalar solitons in asymptotically global
AdS4 spacetimes. This is motivated in part by attempting to identify under what
circumstances such objects can become large relative to the AdS length scale.
We demonstrate that such solitons generically do get large and in fact in the
planar limit smoothly connect up with the zero temperature limit of planar
scalar hair black holes. In particular, for given Lagrangian parameters we
encounter multiple branches of solitons: some which are perturbatively
connected to the AdS vacuum and surprisingly, some which are not. We explore
the phase space of solutions by tuning the charge of the scalar field and
changing scalar boundary conditions at AdS asymptopia, finding intriguing
critical behaviour as a function of these parameters. We demonstrate these
features not only for phenomenologically motivated gravitational Abelian-Higgs
models, but also for models that can be consistently embedded into eleven
dimensional supergravity.Comment: 62 pages, 21 figures. v2: added refs and comments and updated
appendice
Quantum Criticality and Holographic Superconductors in M-theory
We present a consistent Kaluza-Klein truncation of D=11 supergravity on an
arbitrary seven-dimensional Sasaki-Einstein space (SE_7) to a D=4 theory
containing a metric, a gauge-field, a complex scalar field and a real scalar
field. We use this D=4 theory to construct various black hole solutions that
describe the thermodynamics of the d=3 CFTs dual to skew-whiffed AdS_4 X SE_7
solutions. We show that these CFTs have a rich phase diagram, including
holographic superconductivity with, generically, broken parity and time
reversal invariance. At zero temperature the superconducting solutions are
charged domain walls with a universal emergent conformal symmetry in the far
infrared.Comment: 52 pages, 16 figures, 3 appendices; minor changes, version to be
published in JHE
The Herschel Exploitation of Local Galaxy Andromeda (HELGA) II: Dust and Gas in Andromeda
We present an analysis of the dust and gas in Andromeda, using Herschel
images sampling the entire far-infrared peak. We fit a modified-blackbody model
to ~4000 quasi-independent pixels with spatial resolution of ~140pc and find
that a variable dust-emissivity index (beta) is required to fit the data. We
find no significant long-wavelength excess above this model suggesting there is
no cold dust component. We show that the gas-to-dust ratio varies radially,
increasing from ~20 in the center to ~70 in the star-forming ring at 10kpc,
consistent with the metallicity gradient. In the 10kpc ring the average beta is
~1.9, in good agreement with values determined for the Milky Way (MW). However,
in contrast to the MW, we find significant radial variations in beta, which
increases from 1.9 at 10kpc to ~2.5 at a radius of 3.1kpc and then decreases to
1.7 in the center. The dust temperature is fairly constant in the 10kpc ring
(ranging from 17-20K), but increases strongly in the bulge to ~30K. Within
3.1kpc we find the dust temperature is highly correlated with the 3.6 micron
flux, suggesting the general stellar population in the bulge is the dominant
source of dust heating there. At larger radii, there is a weak correlation
between the star formation rate and dust temperature. We find no evidence for
'dark gas' in M31 in contrast to recent results for the MW. Finally, we
obtained an estimate of the CO X-factor by minimising the dispersion in the
gas-to-dust ratio, obtaining a value of (1.9+/-0.4)x10^20 cm^-2 [K kms^-1]^-1.Comment: 19 pages, 18 figures. Submitted to ApJ April 2012; Accepted July 201
Emergent Quantum Near-Criticality from Baryonic Black Branes
We find new black 3-brane solutions describing the "conifold gauge theory" at
nonzero temperature and baryonic chemical potential. Of particular interest is
the low-temperature limit where we find a new kind of weakly curved
near-horizon geometry; it is a warped product AdS_2 x R^3 x T^{1,1} with warp
factors that are powers of the logarithm of the AdS radius. Thus, our solution
encodes a new type of emergent quantum near-criticality. We carry out some
stability checks for our solutions. We also set up a consistent ansatz for
baryonic black 2-branes of M-theory that are asymptotic to AdS_4 x Q^{1,1,1}.Comment: 29 pages, 4 figures; v2 discussion of entropy revised, minor changes;
v3 note added, minor improvements, version published in JHE
Recommended from our members
Are there valid proxy measures of clinical behaviour?
Background: Accurate measures of health professionals' clinical practice are critically important to guide health policy decisions, as well as for professional self-evaluation and for research-based investigation of clinical practice and process of care. It is often not feasible or ethical to measure behaviour through direct observation, and rigorous behavioural measures are difficult and costly to use. The aim of this review was to identify the current evidence relating to the relationships between proxy measures and direct measures of clinical behaviour. In particular, the accuracy of medical record review, clinician self-reported and patient-reported behaviour was assessed relative to directly observed behaviour.
Methods: We searched: PsycINFO; MEDLINE; EMBASE; CINAHL; Cochrane Central Register of Controlled Trials; science/social science citation index; Current contents (social & behavioural med/clinical med); ISI conference proceedings; and Index to Theses. Inclusion criteria: empirical, quantitative studies; and examining clinical behaviours. An independent, direct measure of behaviour (by standardised patient, other trained observer or by video/audio recording) was considered the 'gold standard' for comparison. Proxy measures of behaviour included: retrospective self-report; patient-report; or chart-review. All titles, abstracts, and full text articles retrieved by electronic searching were screened for inclusion and abstracted independently by two reviewers. Disagreements were resolved by discussion with a third reviewer where necessary.
Results: Fifteen reports originating from 11 studies met the inclusion criteria. The method of direct measurement was by standardised patient in six reports, trained observer in three reports, and audio/video recording in six reports. Multiple proxy measures of behaviour were compared in five of 15 reports. Only four of 15 reports used appropriate statistical methods to compare measures. Some direct measures failed to meet our validity criteria. The accuracy of patient report and chart review as proxy measures varied considerably across a wide range of clinical actions. The evidence for clinician self-report was inconclusive.
Conclusion: Valid measures of clinical behaviour are of fundamental importance to accurately identify gaps in care delivery, improve quality of care, and ultimately to improve patient care. However, the evidence base for three commonly used proxy measures of clinicians' behaviour is very limited. Further research is needed to better establish the methods of development, application, and analysis for a range of both direct and proxy measures of behaviour
Cooling of Dark-Matter Admixed Neutron Stars with density-dependent Equation of State
We propose a dark-matter (DM) admixed density-dependent equation of state
where the fermionic DM interacts with the nucleons via Higgs portal. Presence
of DM can hardly influence the particle distribution inside neutron star (NS)
but can significantly affect the structure as well as equation of state (EOS)
of NS. Introduction of DM inside NS softens the equation of state. We explored
the effect of variation of DM mass and DM Fermi momentum on the NS EOS.
Moreover, DM-Higgs coupling is constrained using dark matter direct detection
experiments. Then, we studied cooling of normal NSs using APR and DD2 EOSs and
DM admixed NSs using dark-matter modified DD2 with varying DM mass and Fermi
momentum. We have done our analysis by considering different NS masses. Also DM
mass and DM Fermi momentum are varied for fixed NS mass and DM-Higgs coupling.
We calculated the variations of luminosity and temperature of NS with time for
all EOSs considered in our work and then compared our calculations with the
observed astronomical cooling data of pulsars namely Cas A, RX J0822-43, 1E
1207-52, RX J0002+62, XMMU J17328, PSR B1706-44, Vela, PSR B2334+61, PSR
B0656+14, Geminga, PSR B1055-52 and RX J0720.4-3125. It is found that APR EOS
agrees well with the pulsar data for lighter and medium mass NSs but cooling is
very fast for heavier NS. For DM admixed DD2 EOS, it is found that for all
considered NS masses, all chosen DM masses and Fermi momenta agree well with
the observational data of PSR B0656+14, Geminga, Vela, PSR B1706-44 and PSR
B2334+61. Cooling becomes faster as compared to normal NSs in case of
increasing DM mass and Fermi momenta. It is infered from the calculations that
if low mass super cold NSs are observed in future that may support the fact
that heavier WIMP can be present inside neutron stars.Comment: 24 Pages, 15 Figures and 2 Tables. Version accepted in The European
Physical Journal
Adrenocortical, autonomic, and inflammatory causes of the metabolic syndrome: nested case-control study.
BACKGROUND: The causes of metabolic syndrome (MS), which may be a precursor of coronary disease, are uncertain. We hypothesize that disturbances in neuroendocrine and cardiac autonomic activity (CAA) contribute to development of MS. We examine reversibility and the power of psychosocial and behavioral factors to explain the neuroendocrine adaptations that accompany MS. METHODS AND RESULTS: This was a double-blind case-control study of working men aged 45 to 63 years drawn from the Whitehall II cohort. MS cases (n=30) were compared with healthy controls (n=153). Cortisol secretion, sensitivity, and 24-hour cortisol metabolite and catecholamine output were measured over 2 days. CAA was obtained from power spectral analysis of heart rate variability (HRV) recordings. Twenty-four-hour cortisol metabolite and normetanephrine (3-methoxynorepinephrine) outputs were higher among cases than controls (+ 0.49, +0.45 SD, respectively). HRV and total power were lower among cases (both -0.72 SD). Serum interleukin-6, plasma C-reactive protein, and viscosity were higher among cases (+0.89, +0.51, and +0.72 SD). Lower HRV was associated with higher normetanephrine output (r=-0.19; P=0.03). Among former cases (MS 5 years previously, n=23), cortisol output, heart rate, and interleukin-6 were at the level of controls. Psychosocial factors accounted for 37% of the link between MS and normetanephrine output, and 7% to 19% for CAA. Health-related behaviors accounted for 5% to 18% of neuroendocrine differences. CONCLUSIONS: Neuroendocrine stress axes are activated in MS. There is relative cardiac sympathetic predominance. The neuroendocrine changes may be reversible. This case-control study provides the first evidence that chronic stress may be a cause of MS. Confirmatory prospective studies are required
Degenerate Stars and Gravitational Collapse in AdS/CFT
We construct composite CFT operators from a large number of fermionic primary
fields corresponding to states that are holographically dual to a zero
temperature Fermi gas in AdS space. We identify a large N regime in which the
fermions behave as free particles. In the hydrodynamic limit the Fermi gas
forms a degenerate star with a radius determined by the Fermi level, and a mass
and angular momentum that exactly matches the boundary calculations. Next we
consider an interacting regime, and calculate the effect of the gravitational
back-reaction on the radius and the mass of the star using the
Tolman-Oppenheimer-Volkoff equations. Ignoring other interactions, we determine
the "Chandrasekhar limit" beyond which the degenerate star (presumably)
undergoes gravitational collapse towards a black hole. This is interpreted on
the boundary as a high density phase transition from a cold baryonic phase to a
hot deconfined phase.Comment: 75 page
Particle creation rate for dynamical black holes
We present the particle creation probability rate around a general black hole
as an outcome of quantum fluctuations. Using the uncertainty principle for
these fluctuation, we derive a new ultraviolet frequency cutoff for the
radiation spectrum of a dynamical black hole. Using this frequency cutoff, we
define the probability creation rate function for such black holes. We consider
a dynamical Vaidya model, and calculate the probability creation rate for this
case when its horizon is in a slowly evolving phase. Our results show that one
can expect the usual Hawking radiation emission process in the case of a
dynamical black hole when it has a slowly evolving horizon. Moreover,
calculating the probability rate for a dynamical black hole gives a measure of
when Hawking radiation can be killed off by an incoming flux of matter or
radiation. Our result strictly suggests that we have to revise the Hawking
radiation expectation for primordial black holes that have grown substantially
since they were created in the early universe. We also infer that this
frequency cut off can be a parameter that shows the primordial black hole
growth at the emission moment.Comment: 10 pages, 1 figure. The paper was rewritten in more clear
presentation and one more appendix is adde
- …
