131 research outputs found
Association between fast food purchasing and the local food environment
Objective: In this study, an instrument was created to measure the healthy and unhealthy characteristics of food environments and investigate associations between the whole of the food environment and fast food consumption.Design and subjects: In consultation with other academic researchers in this field, food stores were categorised to either healthy or unhealthy and weighted (between +10 and −10) by their likely contribution to healthy/unhealthy eating practices. A healthy and unhealthy food environment score (FES) was created using these weightings. Using a cross-sectional study design, multilevel multinomial regression was used to estimate the effects of the whole food environment on the fast food purchasing habits of 2547 individuals.Results: Respondents in areas with the highest tertile of the healthy FES had a lower likelihood of purchasing fast food both infrequently and frequently compared with respondents who never purchased, however only infrequent purchasing remained significant when simultaneously modelled with the unhealthy FES (odds ratio (OR) 0.52; 95% confidence interval (CI) 0.32–0.83). Although a lower likelihood of frequent fast food purchasing was also associated with living in the highest tertile of the unhealthy FES, no association remained once the healthy FES was included in the models. In our binary models, respondents living in areas with a higher unhealthy FES than healthy FES were more likely to purchase fast food infrequently (OR 1.35; 95% CI 1.00–1.82) however no association was found for frequent purchasing.Conclusion: Our study provides some evidence to suggest that healthier food environments may discourage fast food purchasing.<br /
Combining motion analysis and microfluidics--a novel approach for detecting whole-animal responses to test substances.
Small, early life stages, such as zebrafish embryos are increasingly used to assess the biological effects of chemical compounds in vivo. However, behavioural screens of such organisms are challenging in terms of both data collection (culture techniques, drug delivery and imaging) and data evaluation (very large data sets), restricting the use of high throughput systems compared to in vitro assays. Here, we combine the use of a microfluidic flow-through culture system, or BioWell plate, with a novel motion analysis technique, (sparse optic flow - SOF) followed by spectral analysis (discrete Fourier transformation - DFT), as a first step towards automating data extraction and analysis for such screenings. Replicate zebrafish embryos housed in a BioWell plate within a custom-built imaging system were subject to a chemical exposure (1.5% ethanol). Embryo movement was videoed before (30 min), during (60 min) and after (60 min) exposure and SOF was then used to extract data on movement (angles of rotation and angular changes to the centre of mass of embryos). DFT was subsequently used to quantify the movement patterns exhibited during these periods and Multidimensional Scaling and ANOSIM were used to test for differences. Motion analysis revealed that zebrafish had significantly altered movements during both the second half of the alcohol exposure period and also the second half of the recovery period compared to their pre-treatment movements. Manual quantification of tail flicking revealed the same differences between exposure-periods as detected using the automated approach. However, the automated approach also incorporates other movements visible in the organism such as blood flow and heart beat, and has greater power to discern environmentally-driven changes in the behaviour and physiology of organisms. We suggest that combining these technologies could provide a highly efficient, high throughput assay, for assessing whole embryo responses to various drugs and chemicals
Nonlinear Network Dynamics on Earthquake Fault Systems
Earthquake faults occur in networks that have dynamical modes not displayed
by single isolated faults. Using simulations of the network of strike-slip
faults in southern California, we find that the physics depends critically on
both the interactions among the faults, which are determined by the geometry of
the fault network, as well as on the stress dissipation properties of the
nonlinear frictional physics, similar to the dynamics of integrate-and-fire
neural networks.Comment: 12 pages, 4 figure
Little evidence for a selective advantage of armour-reduced threespined stickleback individuals in an invertebrate predation experiment
The repeated colonization of freshwater habitats by the ancestrally marine threespined stickleback Gasterosteus aculeatus has been associated with many instances of parallel reduction in armour traits, most notably number of lateral plates. The change in predation regime from marine systems, dominated by gape-limited predators such as piscivorous fishes, to freshwater habitats where grappling invertebrate predators such as insect larvae can dominate the predation regime, has been hypothesized as a driving force. Here we experimentally test the hypothesis that stickleback with reduced armour possess a selective advantage in the face of predation by invertebrates, using a natural population of stickleback that is highly polymorphic for armour traits and a common invertebrate predator from the same location. Our results provide no compelling evidence for selection in this particular predator–prey interaction. We suggest that the postulated selective advantage of low armour in the face of invertebrate predation may not be universal
A review of the distribution of particulate trace elements in urban terrestrial environments and its application to considerations of risk
We review the evolution, state of the art and future lines of research on the sources, transport pathways, and sinks of particulate trace elements in urban terrestrial environments to include the atmosphere, soils, and street and indoor dusts. Such studies reveal reductions in the emissions of some elements of historical concern such as Pb, with interest consequently focusing on other toxic trace elements such as As, Cd, Hg, Zn, and Cu. While establishment of levels of these elements is important in assessing the potential impacts of human society on the urban environment, it is also necessary to apply this knowledge in conjunction with information on the toxicity of those trace elements and the degree of exposure of human receptors to an assessment of whether such contamination represents a real risk to the city’s inhabitants and therefore how this risk can be addressed
Male Choice in the Stream-Anadromous Stickleback Complex
Studies of mating preferences and pre-mating reproductive isolation have often focused on females, but the potential importance of male preferences is increasingly appreciated. We investigated male behavior in the context of reproductive isolation between divergent anadromous and stream-resident populations of threespine stickleback, Gasterosteus aculeatus, using size-manipulated females of both ecotypes. Specifically, we asked if male courtship preferences are present, and if they are based on relative body size, non-size aspects of ecotype, or other traits. Because male behaviors were correlated with each other, we conducted a principal components analysis on the correlations and ran subsequent analyses on the principal components. The two male ecotypes differed in overall behavioral frequencies, with stream-resident males exhibiting consistently more vigorous and positive courtship than anadromous males, and an otherwise aggressive behavior playing a more positive role in anadromous than stream-resident courtship. We observed more vigorous courtship toward smaller females by (relatively small) stream-resident males and the reverse pattern for (relatively large) anadromous males. Thus size-assortative male courtship preferences may contribute to reproductive isolation in this system, although preferences are far from absolute. We found little indication of males responding preferentially to females of their own ecotype independent of body size
Both Geography and Ecology Contribute to Mating Isolation in Guppies
Local adaptation to different environments can promote mating isolation – either as an incidental by-product of trait divergence, or as a result of selection to avoid maladaptive mating. Numerous recent empirical examples point to the common influence of divergent natural selection on speciation based largely on evidence of strong pre-mating isolation between populations from different habitat types. Accumulating evidence for natural selection's influence on speciation is therefore no longer a challenge. The difficulty, rather, is in determining the mechanisms involved in the progress of adaptive divergence to speciation once barriers to gene flow are already present. Here, we present results of both laboratory and field experiments with Trinidadian guppies (Poecilia reticulata) from different environments, who do not show complete reproductive isolation despite adaptive divergence. We investigate patterns of mating isolation between populations that do and do not exchange migrants and show evidence for both by-product and reinforcement mechanisms depending on female ecology. Specifically, low-predation females discriminate against all high-predation males thus implying a by-product mechanism, whereas high-predation females only discriminate against low-predation males from further upstream in the same river, implying selection to avoid maladaptive mating. Our study thus confirms that mechanisms of adaptive speciation are not necessarily mutually exclusive and uncovers the complex ecology-geography interactions that underlie the evolution of mating isolation in nature
Evidence for Mito-Nuclear and Sex-Linked Reproductive Barriers between the Hybrid Italian Sparrow and Its Parent Species
Studies of reproductive isolation between homoploid hybrid species and their parent species have rarely been carried out. Here we investigate reproductive barriers between a recently recognized hybrid bird species, the Italian sparrow Passer italiae and its parent species, the house sparrow P. domesticus and Spanish sparrow P. hispaniolensis. Reproductive barriers can be difficult to study in hybrid species due to lack of geographical contact between taxa. However, the Italian sparrow lives parapatrically with the house sparrow and both sympatrically and parapatrically with the Spanish sparrow. Through whole-transcriptome sequencing of six individuals of each of the two parent species we identified a set of putatively parent species-diagnostic single nucleotide polymorphism (SNP) markers. After filtering for coverage, genotyping success (>97%) and multiple SNPs per gene, we retained 86 species-informative, genic, nuclear and mitochondrial SNP markers from 84 genes for analysis of 612 male individuals. We show that a disproportionately large number of sex-linked genes, as well as the mitochondria and nuclear genes with mitochondrial function, exhibit sharp clines at the boundaries between the hybrid and the parent species, suggesting a role for mito-nuclear and sex-linked incompatibilities in forming reproductive barriers. We suggest that genomic conflict via interactions between mitochondria and sex-linked genes with mitochondrial function ("mother's curse") at one boundary and centromeric drive at the other may best explain our findings. Hybrid speciation in the Italian sparrow may therefore be influenced by mechanisms similar to those involved in non-hybrid speciation, but with the formation of two geographically separated species boundaries instead of one. Spanish sparrow alleles at some loci have spread north to form reproductive barriers with house sparrows, while house sparrow alleles at different loci, including some on the same chromosome, have spread in the opposite direction to form barriers against Spanish sparrows
Reference genes for gene expression studies in wheat flag leaves grown under different farming conditions
<p>Abstract</p> <p>Background</p> <p>Internal control genes with highly uniform expression throughout the experimental conditions are required for accurate gene expression analysis as no universal reference genes exists. In this study, the expression stability of 24 candidate genes from <it>Triticum aestivum </it>cv. Cubus flag leaves grown under organic and conventional farming systems was evaluated in two locations in order to select suitable genes that can be used for normalization of real-time quantitative reverse-transcription PCR (RT-qPCR) reactions. The genes were selected among the most common used reference genes as well as genes encoding proteins involved in several metabolic pathways.</p> <p>Findings</p> <p>Individual genes displayed different expression rates across all samples assayed. Applying geNorm, a set of three potential reference genes were suitable for normalization of RT-qPCR reactions in winter wheat flag leaves cv. Cubus: <it>TaFNRII </it>(ferredoxin-NADP(H) oxidoreductase; AJ457980.1), <it>ACT2 </it>(actin 2; TC234027), and <it>rrn26 </it>(a putative homologue to RNA 26S gene; AL827977.1). In addition of these three genes that were also top-ranked by NormFinder, two extra genes: <it>CYP18-2 </it>(Cyclophilin A, AY456122.1) and <it>TaWIN1 </it>(14-3-3 like protein, AB042193) were most consistently stably expressed.</p> <p>Furthermore, we showed that <it>TaFNRII, ACT2</it>, and <it>CYP18-2 </it>are suitable for gene expression normalization in other two winter wheat varieties (Tommi and Centenaire) grown under three treatments (organic, conventional and no nitrogen) and a different environment than the one tested with cv. Cubus.</p> <p>Conclusions</p> <p>This study provides a new set of reference genes which should improve the accuracy of gene expression analyses when using wheat flag leaves as those related to the improvement of nitrogen use efficiency for cereal production.</p
Behavioural responses of Anopheles gambiae sensu stricto M and S molecular form larvae to an aquatic predator in Burkina Faso
Background: Predation of aquatic immature stages has been identified as a major evolutionary force driving habitat segregation and niche partitioning in the malaria mosquito Anopheles gambiae sensu stricto in the humid savannahs of Burkina Faso, West Africa. Here, we explored behavioural responses to the presence of a predator in wild populations of the M and S molecular forms of An. gambiae that typically breed in permanent (e.g., rice field paddies) and temporary (e.g., road ruts) water collections. Methods: Larvae used in these experiments were obtained from eggs laid by wild female An. gambiae collected from two localities in south-western Burkina Faso during the 2008 rainy season. Single larvae were observed in an experimental arena, and behavioural traits were recorded and quantified a) in the absence of a predator and b) in the presence of a widespread mosquito predator, the backswimmer Anisops jaczewskii. Differences in the proportion of time allocated to each behaviour were assessed using Principal Component Analysis and Multivariate Analysis of Variance. Results: The behaviour of M and S form larvae was found to differ significantly; although both forms mainly foraged at the water surface, spending 60-90% of their time filtering water at the surface or along the wall of the container, M form larvae spent on average significantly more time browsing at the bottom of the container than S form larvae (4.5 vs. 1.3% of their overall time, respectively; P < 0.05). In the presence of a predator, larvae of both forms modified their behaviour, spending significantly more time resting along the container wall (P < 0.001). This change in behaviour was at least twice as great in the M form (from 38.6 to 66.6% of the time at the wall in the absence and presence of the predator, respectively) than in the S form (from 48.3 to 64.1%). Thrashing at the water surface exposed larvae to a significantly greater risk of predation by the notonectid (P < 0.01), whereas predation occurred significantly less often when larvae were at the container wall (P < 0.05) and might reflect predator vigilance. Conclusions: Behavioural differences between larvae of the M and S form of An. gambiae in response to an acute predation risk is likely to be a reflection of different trade-offs between foraging and predator vigilance that might be of adaptive value in contrasting aquatic ecosystems. Future studies should explore the relevance of these findings under the wide range of natural settings where both forms co-exist in Africa
- …
