8,111 research outputs found
Tukushi modulates Xnr2, FGF, and and BMP signalling: Regulation of Xenopus Germ Layer Formation
BACKGROUND: Cell-cell communication is essential in tissue patterning. In early amphibian development, mesoderm is formed in the blastula-stage embryo through inductive interactions in which vegetal cells act on overlying equatorial cells. Members of the TGF-beta family such as activin B, Vg1, derrière and Xenopus nodal-related proteins (Xnrs) are candidate mesoderm inducing factors, with further activity to induce endoderm of the vegetal region. TGF-beta-like ligands, including BMP, are also responsible for patterning of germ layers. In addition, FGF signaling is essential for mesoderm formation whereas FGF signal inhibition has been implicated in endoderm induction. Clearly, several signaling pathways are coordinated to produce an appropriate developmental output; although intracellular crosstalk is known to integrate multiple pathways, relatively little is known about extracellular coordination. METHODOLOGY/PRINCIPAL FINDINGS: Here, we show that Xenopus Tsukushi (X-TSK), a member of the secreted small leucine rich repeat proteoglycan (SLRP) family, is expressed in ectoderm, endoderm, and the organizer during early development. We have previously reported that X-TSK binds to and inhibits BMP signaling in cooperation with chordin. We now demonstrate two novel interactions: X-TSK binds to and inhibits signaling by FGF8b, in addition to binding to and enhancement of Xnr2 signaling. This signal integration by X-TSK at the extracellular level has an important role in germ layer formation and patterning. Vegetally localized X-TSK potentiates endoderm formation through coordination of BMP, FGF and Xnr2 signaling. In contrast, X-TSK inhibition of FGF-MAPK signaling blocks ventrolateral mesoderm formation, while BMP inhibition enhances organizer formation. These actions of X-TSK are reliant upon its expression in endoderm and dorsal mesoderm, with relative exclusion from ventrolateral mesoderm, in a pattern shaped by FGF signals. CONCLUSIONS/SIGNIFICANCE: Based on our observations, we propose a novel mechanism by which X-TSK refines the field of positional information by integration of multiple pathways in the extracellular space
Correlation functions quantify super-resolution images and estimate apparent clustering due to over-counting
We present an analytical method to quantify clustering in super-resolution
localization images of static surfaces in two dimensions. The method also
describes how over-counting of labeled molecules contributes to apparent
self-clustering and how the effective lateral resolution of an image can be
determined. This treatment applies to clustering of proteins and lipids in
membranes, where there is significant interest in using super-resolution
localization techniques to probe membrane heterogeneity. When images are
quantified using pair correlation functions, the magnitude of apparent
clustering due to over-counting will vary inversely with the surface density of
labeled molecules and does not depend on the number of times an average
molecule is counted. Over-counting does not yield apparent co-clustering in
double label experiments when pair cross-correlation functions are measured. We
apply our analytical method to quantify the distribution of the IgE receptor
(Fc{\epsilon}RI) on the plasma membranes of chemically fixed RBL-2H3 mast cells
from images acquired using stochastic optical reconstruction microscopy (STORM)
and scanning electron microscopy (SEM). We find that apparent clustering of
labeled IgE bound to Fc{\epsilon}RI detected with both methods arises from
over-counting of individual complexes. Thus our results indicate that these
receptors are randomly distributed within the resolution and sensitivity limits
of these experiments.Comment: 22 pages, 5 figure
Imaging the Two Gaps of the High-TC Superconductor Pb-Bi2Sr2CuO6+x
The nature of the pseudogap state, observed above the superconducting
transition temperature TC in many high temperature superconductors, is the
center of much debate. Recently, this discussion has focused on the number of
energy gaps in these materials. Some experiments indicate a single energy gap,
implying that the pseudogap is a precursor state. Others indicate two,
suggesting that it is a competing or coexisting phase. Here we report on
temperature dependent scanning tunneling spectroscopy of Pb-Bi2Sr2CuO6+x. We
have found a new, narrow, homogeneous gap that vanishes near TC, superimposed
on the typically observed, inhomogeneous, broad gap, which is only weakly
temperature dependent. These results not only support the two gap picture, but
also explain previously troubling differences between scanning tunneling
microscopy and other experimental measurements.Comment: 6 page
Longer fixation duration while viewing face images
The spatio-temporal properties of saccadic eye movements can be influenced by the cognitive demand and the characteristics of the observed scene. Probably due to its crucial role in social communication, it is argued that face perception may involve different cognitive processes compared with non-face object or scene perception. In this study, we investigated whether and how face and natural scene images can influence the patterns of visuomotor activity. We recorded monkeys’ saccadic eye movements as they freely viewed monkey face and natural scene images. The face and natural scene images attracted similar number of fixations, but viewing of faces was accompanied by longer fixations compared with natural scenes. These longer fixations were dependent on the context of facial features. The duration of fixations directed at facial contours decreased when the face images were scrambled, and increased at the later stage of normal face viewing. The results suggest that face and natural scene images can generate different patterns of visuomotor activity. The extra fixation duration on faces may be correlated with the detailed analysis of facial features
Parametric study of EEG sensitivity to phase noise during face processing
<b>Background: </b>
The present paper examines the visual processing speed of complex objects, here faces, by mapping the relationship between object physical properties and single-trial brain responses. Measuring visual processing speed is challenging because uncontrolled physical differences that co-vary with object categories might affect brain measurements, thus biasing our speed estimates. Recently, we demonstrated that early event-related potential (ERP) differences between faces and objects are preserved even when images differ only in phase information, and amplitude spectra are equated across image categories. Here, we use a parametric design to study how early ERP to faces are shaped by phase information. Subjects performed a two-alternative force choice discrimination between two faces (Experiment 1) or textures (two control experiments). All stimuli had the same amplitude spectrum and were presented at 11 phase noise levels, varying from 0% to 100% in 10% increments, using a linear phase interpolation technique. Single-trial ERP data from each subject were analysed using a multiple linear regression model.
<b>Results: </b>
Our results show that sensitivity to phase noise in faces emerges progressively in a short time window between the P1 and the N170 ERP visual components. The sensitivity to phase noise starts at about 120–130 ms after stimulus onset and continues for another 25–40 ms. This result was robust both within and across subjects. A control experiment using pink noise textures, which had the same second-order statistics as the faces used in Experiment 1, demonstrated that the sensitivity to phase noise observed for faces cannot be explained by the presence of global image structure alone. A second control experiment used wavelet textures that were matched to the face stimuli in terms of second- and higher-order image statistics. Results from this experiment suggest that higher-order statistics of faces are necessary but not sufficient to obtain the sensitivity to phase noise function observed in response to faces.
<b>Conclusion: </b>
Our results constitute the first quantitative assessment of the time course of phase information processing by the human visual brain. We interpret our results in a framework that focuses on image statistics and single-trial analyses
Degeneracy: a link between evolvability, robustness and complexity in biological systems
A full accounting of biological robustness remains elusive; both in terms of the mechanisms by which robustness is achieved and the forces that have caused robustness to grow over evolutionary time. Although its importance to topics such as ecosystem services and resilience is well recognized, the broader relationship between robustness and evolution is only starting to be fully appreciated. A renewed interest in this relationship has been prompted by evidence that mutational robustness can play a positive role in the discovery of adaptive innovations (evolvability) and evidence of an intimate relationship between robustness and complexity in biology.
This paper offers a new perspective on the mechanics of evolution and the origins of complexity, robustness, and evolvability. Here we explore the hypothesis that degeneracy, a partial overlap in the functioning of multi-functional components, plays a central role in the evolution and robustness of complex forms. In support of this hypothesis, we present evidence that degeneracy is a fundamental source of robustness, it is intimately tied to multi-scaled complexity, and it establishes conditions that are necessary for system evolvability
Pleosporales
One hundred and five generic types of Pleosporales are described and illustrated. A brief introduction and detailed history with short notes on morphology, molecular phylogeny as well as a general conclusion of each genus are provided. For those genera where the type or a representative specimen is unavailable, a brief note is given. Altogether 174 genera of Pleosporales are treated. Phaeotrichaceae as well as Kriegeriella, Zeuctomorpha and Muroia are excluded from Pleosporales. Based on the multigene phylogenetic analysis, the suborder Massarineae is emended to accommodate five families, viz. Lentitheciaceae, Massarinaceae, Montagnulaceae, Morosphaeriaceae and Trematosphaeriaceae
Network adaptation improves temporal representation of naturalistic stimuli in drosophila eye: II Mechanisms
Retinal networks must adapt constantly to best present the ever changing visual world to the brain. Here we test the hypothesis that adaptation is a result of different mechanisms at several synaptic connections within the network. In a companion paper (Part I), we showed that adaptation in the photoreceptors (R1-R6) and large monopolar cells (LMC) of the Drosophila eye improves sensitivity to under-represented signals in seconds by enhancing both the amplitude and frequency distribution of LMCs' voltage responses to repeated naturalistic contrast series. In this paper, we show that such adaptation needs both the light-mediated conductance and feedback-mediated synaptic conductance. A faulty feedforward pathway in histamine receptor mutant flies speeds up the LMC output, mimicking extreme light adaptation. A faulty feedback pathway from L2 LMCs to photoreceptors slows down the LMC output, mimicking dark adaptation. These results underline the importance of network adaptation for efficient coding, and as a mechanism for selectively regulating the size and speed of signals in neurons. We suggest that concert action of many different mechanisms and neural connections are responsible for adaptation to visual stimuli. Further, our results demonstrate the need for detailed circuit reconstructions like that of the Drosophila lamina, to understand how networks process information
Defending the genome from the enemy within:mechanisms of retrotransposon suppression in the mouse germline
The viability of any species requires that the genome is kept stable as it is transmitted from generation to generation by the germ cells. One of the challenges to transgenerational genome stability is the potential mutagenic activity of transposable genetic elements, particularly retrotransposons. There are many different types of retrotransposon in mammalian genomes, and these target different points in germline development to amplify and integrate into new genomic locations. Germ cells, and their pluripotent developmental precursors, have evolved a variety of genome defence mechanisms that suppress retrotransposon activity and maintain genome stability across the generations. Here, we review recent advances in understanding how retrotransposon activity is suppressed in the mammalian germline, how genes involved in germline genome defence mechanisms are regulated, and the consequences of mutating these genome defence genes for the developing germline
Formation of Supermassive Black Holes
Evidence shows that massive black holes reside in most local galaxies.
Studies have also established a number of relations between the MBH mass and
properties of the host galaxy such as bulge mass and velocity dispersion. These
results suggest that central MBHs, while much less massive than the host (~
0.1%), are linked to the evolution of galactic structure. In hierarchical
cosmologies, a single big galaxy today can be traced back to the stage when it
was split up in hundreds of smaller components. Did MBH seeds form with the
same efficiency in small proto-galaxies, or did their formation had to await
the buildup of substantial galaxies with deeper potential wells? I briefly
review here some of the physical processes that are conducive to the evolution
of the massive black hole population. I will discuss black hole formation
processes for `seed' black holes that are likely to place at early cosmic
epochs, and possible observational tests of these scenarios.Comment: To appear in The Astronomy and Astrophysics Review. The final
publication is available at http://www.springerlink.co
- …
