2,627 research outputs found
XRCC2 R188H (rs3218536), XRCC3 T241M (rs861539) and R243H (rs77381814) single nucleotide polymorphisms in cervical cancer risk
Human Papillomavirus (HPV) is the main cause of cervical cancer and its precursor lesions. Transformation may be induced by several mechanisms, including oncogene activation and genome instability. Individual differences in DNA damage recognition and repair have been hypothesized to influence cervical cancer risk. The aim of this study was to evaluate whether the double strand break gene polymorphisms XRCC2 R188H G>A (rs3218536), XRCC3 T241M C>T (rs861539) and R243H G>A (rs77381814) are associated to cervical cancer in Argentine women. A case control study consisting of 322 samples (205 cases and 117 controls) was carried out. HPV DNA detection was performed by PCR and genotyping of positive samples by EIA (enzyme immunoassay). XRCC2 and 3 polymorphisms were determined by pyrosequencing. The HPV-adjusted odds ratio (OR) of XRCC2 188 GG/AG genotypes was OR = 2.4 (CI = 1.1-4.9, p = 0.02) for cervical cancer. In contrast, there was no increased risk for cervical cancer with XRCC3 241 TT/CC genotypes (OR = 0.48; CI = 0.2-1; p = 0.1) or XRCC3 241 CT/CC (OR = 0.87; CI = 0.52-1.4; p = 0.6). Regarding XRCC3 R243H, the G allele was almost fixed in the population studied. In conclusion, although the sample size was modest, the present data indicate a statistical association between cervical cancer and XRCC2 R188H polymorphism. Future studies are needed to confirm these findings.Fil: Perez, Luis Orlando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico CONICET- La Plata. Instituto de Genética Veterinaria "Ing. Fernando Noel Dulout". Universidad Nacional de La Plata. Facultad de Ciencias Veterinarias. Instituto de Genética Veterinaria; ArgentinaFil: Crivaro, Andrea Natalia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico CONICET- La Plata. Instituto de Genética Veterinaria "Ing. Fernando Noel Dulout". Universidad Nacional de La Plata. Facultad de Ciencias Veterinarias. Instituto de Genética Veterinaria; ArgentinaFil: Barbisan, Gisela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico CONICET- La Plata. Instituto de Genética Veterinaria "Ing. Fernando Noel Dulout". Universidad Nacional de La Plata. Facultad de Ciencias Veterinarias. Instituto de Genética Veterinaria; ArgentinaFil: Poleri, Lucía Belén. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico CONICET- La Plata. Instituto de Genética Veterinaria "Ing. Fernando Noel Dulout". Universidad Nacional de La Plata. Facultad de Ciencias Veterinarias. Instituto de Genética Veterinaria; ArgentinaFil: Golijow, Carlos Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico CONICET- La Plata. Instituto de Genética Veterinaria "Ing. Fernando Noel Dulout". Universidad Nacional de La Plata. Facultad de Ciencias Veterinarias. Instituto de Genética Veterinaria; Argentin
Stripes, Pseudogaps, and Van Hove Nesting in the Three-band tJ Model
Slave boson calculations have been carried out in the three-band tJ model for
the high-T_c cuprates, with the inclusion of coupling to oxygen breathing mode
phonons. Phonon-induced Van Hove nesting leads to a phase separation between a
hole-doped domain and a (magnetic) domain near half filling, with long-range
Coulomb forces limiting the separation to a nanoscopic scale. Strong
correlation effects pin the Fermi level close to, but not precisely at the Van
Hove singularity (VHS), which can enhance the tendency to phase separation. The
resulting dispersions have been calculated, both in the uniform phases and in
the phase separated regime. In the latter case, distinctly different
dispersions are found for large, random domains and for regular (static)
striped arrays, and a hypothetical form is presented for dynamic striped
arrays. The doping dependence of the latter is found to provide an excellent
description of photoemission and thermodynamic experiments on pseudogap
formation in underdoped cuprates. In particular, the multiplicity of observed
gaps is explained as a combination of flux phase plus charge density wave (CDW)
gaps along with a superconducting gap. The largest gap is associated with VHS
nesting. The apparent smooth evolution of this gap with doping masks a
crossover from CDW-like effects near optimal doping to magnetic effects (flux
phase) near half filling. A crossover from large Fermi surface to hole pockets
with increased underdoping is found. In the weakly overdoped regime, the CDW
undergoes a quantum phase transition (), which could be obscured
by phase separation.Comment: 15 pages, Latex, 18 PS figures Corrects a sign error: major changes,
esp. in Sect. 3, Figs 1-4,6 replace
Defending the genome from the enemy within:mechanisms of retrotransposon suppression in the mouse germline
The viability of any species requires that the genome is kept stable as it is transmitted from generation to generation by the germ cells. One of the challenges to transgenerational genome stability is the potential mutagenic activity of transposable genetic elements, particularly retrotransposons. There are many different types of retrotransposon in mammalian genomes, and these target different points in germline development to amplify and integrate into new genomic locations. Germ cells, and their pluripotent developmental precursors, have evolved a variety of genome defence mechanisms that suppress retrotransposon activity and maintain genome stability across the generations. Here, we review recent advances in understanding how retrotransposon activity is suppressed in the mammalian germline, how genes involved in germline genome defence mechanisms are regulated, and the consequences of mutating these genome defence genes for the developing germline
Deciphering the functional role of spatial and temporal muscle synergies in whole-body movements
International audienceVoluntary movement is hypothesized to rely on a limited number of muscle synergies, the recruitment of which translates task goals into effective muscle activity. In this study, we investigated how to analytically characterize the functional role of different types of muscle synergies in task performance. To this end, we recorded a comprehensive dataset of muscle activity during a variety of whole-body pointing movements. We decomposed the electromyographic (EMG) signals using a space-by-time modularity model which encompasses the main types of synergies. We then used a task decoding and information theoretic analysis to probe the role of each synergy by mapping it to specific task features. We found that the temporal and spatial aspects of the movements were encoded by different temporal and spatial muscle synergies, respectively, consistent with the intuition that there should a correspondence between major attributes of movement and major features of synergies. This approach led to the development of a novel computational method for comparing muscle synergies from different participants according to their functional role. This functional similarity analysis yielded a small set of temporal and spatial synergies that describes the main features of whole-body reaching movements
Two chemically similar stellar overdensities on opposite sides of the plane of the Galaxy
Our Galaxy is thought to have undergone an active evolutionary history
dominated by star formation, the accretion of cold gas, and, in particular,
mergers up to 10 gigayear ago. The stellar halo reveals rich fossil evidence of
these interactions in the form of stellar streams, substructures, and
chemically distinct stellar components. The impact of dwarf galaxy mergers on
the content and morphology of the Galactic disk is still being explored. Recent
studies have identified kinematically distinct stellar substructures and moving
groups, which may have extragalactic origin. However, there is mounting
evidence that stellar overdensities at the outer disk/halo interface could have
been caused by the interaction of a dwarf galaxy with the disk. Here we report
detailed spectroscopic analysis of 14 stars drawn from two stellar
overdensities, each lying about 5 kiloparsecs above and below the Galactic
plane - locations suggestive of association with the stellar halo. However, we
find that the chemical compositions of these stars are almost identical, both
within and between these groups, and closely match the abundance patterns of
the Milky Way disk stars. This study hence provides compelling evidence that
these stars originate from the disk and the overdensities they are part of were
created by tidal interactions of the disk with passing or merging dwarf
galaxies.Comment: accepted for publication in Natur
Characteristic Evolution and Matching
I review the development of numerical evolution codes for general relativity
based upon the characteristic initial value problem. Progress in characteristic
evolution is traced from the early stage of 1D feasibility studies to 2D
axisymmetric codes that accurately simulate the oscillations and gravitational
collapse of relativistic stars and to current 3D codes that provide pieces of a
binary black hole spacetime. Cauchy codes have now been successful at
simulating all aspects of the binary black hole problem inside an artificially
constructed outer boundary. A prime application of characteristic evolution is
to extend such simulations to null infinity where the waveform from the binary
inspiral and merger can be unambiguously computed. This has now been
accomplished by Cauchy-characteristic extraction, where data for the
characteristic evolution is supplied by Cauchy data on an extraction worldtube
inside the artificial outer boundary. The ultimate application of
characteristic evolution is to eliminate the role of this outer boundary by
constructing a global solution via Cauchy-characteristic matching. Progress in
this direction is discussed.Comment: New version to appear in Living Reviews 2012. arXiv admin note:
updated version of arXiv:gr-qc/050809
Current challenges in software solutions for mass spectrometry-based quantitative proteomics
This work was in part supported by the PRIME-XS project, grant agreement number 262067, funded by the European Union seventh Framework Programme; The Netherlands Proteomics Centre, embedded in The Netherlands Genomics Initiative; The Netherlands Bioinformatics Centre; and the Centre for Biomedical Genetics (to S.C., B.B. and A.J.R.H); by NIH grants NCRR RR001614 and RR019934 (to the UCSF Mass Spectrometry Facility, director: A.L. Burlingame, P.B.); and by grants from the MRC, CR-UK, BBSRC and Barts and the London Charity (to P.C.
Foxp2 controls synaptic wiring of corticostriatal circuits and vocal communication by opposing Mef2c
Cortico-basal ganglia circuits are critical for speech and language and are implicated in autism spectrum disorder, in which language function can be severely affected. We demonstrate that in the mouse striatum, the gene Foxp2 negatively interacts with the synapse suppressor gene Mef2c. We present causal evidence that Mef2c inhibition by Foxp2 in neonatal mouse striatum controls synaptogenesis of corticostriatal inputs and vocalization in neonates. Mef2c suppresses corticostriatal synapse formation and striatal spinogenesis, but can itself be repressed by Foxp2 through direct DNA binding. Foxp2 deletion de-represses Mef2c, and both intrastriatal and global decrease of Mef2c rescue vocalization and striatal spinogenesis defects of Foxp2-deletion mutants. These findings suggest that Foxp2-Mef2C signaling is critical to corticostriatal circuit formation. If found in humans, such signaling defects could contribute to a range of neurologic and neuropsychiatric disorders.National Institutes of Health (U.S.) (Grant R37 HD028341)Eunice Kennedy Shriver National Institute of Child Health and Human Development (U.S.) (Award R37 HD028341
Breed and adaptive response modulate bovine peripheral blood cells’ transcriptome
Background: Adaptive response includes a variety of physiological modifications to face changes in external or internal conditions and adapt to a new situation. The acute phase proteins (APPs) are reactants synthesized against environmental stimuli like stress, infection, inflammation. Methods: To delineate the differences in molecular constituents of adaptive response to the environment we performed the whole-blood transcriptome analysis in Italian Holstein (IH) and Italian Simmental (IS) breeds. For this, 663 IH and IS cows from six commercial farms were clustered according to the blood level of APPs. Ten extreme individuals (five APP+ and APP- variants) from each farm were selected for the RNA-seq using the Illumina sequencing technology. Differentially expressed (DE) genes were analyzed using dynamic impact approach (DIA) and DAVID annotation clustering. Milk production data were statistically elaborated to assess the association of APP+ and APP- gene expression patterns with variations in milk parameters. Results: The overall de novo assembly of cDNA sequence data generated 13,665 genes expressed in bovine blood cells. Comparative genomic analysis revealed 1,152 DE genes in the comparison of all APP+ vs. all APP- variants; 531 and 217 DE genes specific for IH and IS comparison respectively. In all comparisons overexpressed genes were more represented than underexpressed ones. DAVID analysis revealed 369 DE genes across breeds, 173 and 73 DE genes in IH and IS comparison respectively. Among the most impacted pathways for both breeds were vitamin B6 metabolism, folate biosynthesis, nitrogen metabolism and linoleic acid metabolism. Conclusions: Both DIA and DAVID approaches produced a high number of significantly impacted genes and pathways with a narrow connection to adaptive response in cows with high level of blood APPs. A similar variation in gene expression and impacted pathways between APP+ and APP- variants was found between two studied breeds. Such similarity was also confirmed by annotation clustering of the DE genes. However, IH breed showed higher and more differentiated impacts compared to IS breed and such particular features in the IH adaptive response could be explained by its higher metabolic activity. Variations of milk production data were significantly associated with APP+ and APP- gene expression patterns
- …
