480 research outputs found
Giant Anharmonic Phonon Scattering in PbTe
Understanding the microscopic processes affecting the bulk thermal
conductivity is crucial to develop more efficient thermoelectric materials.
PbTe is currently one of the leading thermoelectric materials, largely thanks
to its low thermal conductivity. However, the origin of this low thermal
conductivity in a simple rocksalt structure has so far been elusive. Using a
combination of inelastic neutron scattering measurements and first-principles
computations of the phonons, we identify a strong anharmonic coupling between
the ferroelectric transverse optic (TO) mode and the longitudinal acoustic (LA)
modes in PbTe. This interaction extends over a large portion of reciprocal
space, and directly affects the heat-carrying LA phonons. The LA-TO anharmonic
coupling is likely to play a central role in explaining the low thermal
conductivity of PbTe. The present results provide a microscopic picture of why
many good thermoelectric materials are found near a lattice instability of the
ferroelectric type
Effect of preoperative thoracic duct drainage on canine kidney transplantation
Chronic drainage of the thoracic duct to the esophagus was developed in dogs, and its efficacy in immunomodulation was tested using kidney transplantation. Compared to 9.7 days in the control, the mean animal survival was prolonged to 9.9 days, 17.8 days, and 18.5 days when TDD was applied preoperatively for 3 weeks, 6 weeks, and 9 weeks, respectively. Prolongation was significant after 6 weeks. Patency of the fistula was 93.5, 80.4, and 76.1% at respective weeks. Number of peripheral T-lymphocytes determined by a new monoclonal antibody diminished after 3 weeks. All animals were in normal health, requiring no special care for fluid, electrolyte, or protein replacement
Thermopower of the Correlated Narrow Gap Semiconductor FeSi and Comparison to RuSi
Iron based narrow gap semiconductors such as FeSi, FeSb2, or FeGa3 have
received a lot of attention because they exhibit a large thermopower, as well
as striking similarities to heavy fermion Kondo insulators. Many proposals have
been advanced, however, lacking quantitative methodologies applied to this
problem, a consensus remained elusive to date. Here, we employ realistic
many-body calculations to elucidate the impact of electronic correlation
effects on FeSi. Our methodology accounts for all substantial anomalies
observed in FeSi: the metallization, the lack of conservation of spectral
weight in optical spectroscopy, and the Curie susceptibility. In particular we
find a very good agreement for the anomalous thermoelectric power. Validated by
this congruence with experiment, we further discuss a new physical picture of
the microscopic nature of the insulator-to-metal crossover. Indeed, we find the
suppression of the Seebeck coefficient to be driven by correlation induced
incoherence. Finally, we compare FeSi to its iso-structural and iso-electronic
homologue RuSi, and predict that partially substituted Fe(1-x)Ru(x)Si will
exhibit an increased thermopower at intermediate temperatures.Comment: 14 pages. Proceedings of the Hvar 2011 Workshop on 'New materials for
thermoelectric applications: theory and experiment
Search for CP violation in D0 and D+ decays
A high statistics sample of photoproduced charm particles from the FOCUS
(E831) experiment at Fermilab has been used to search for CP violation in the
Cabibbo suppressed decay modes D+ to K-K+pi+, D0 to K-K+ and D0 to pi-pi+. We
have measured the following CP asymmetry parameters: A_CP(K-K+pi+) = +0.006 +/-
0.011 +/- 0.005, A_CP(K-K+) = -0.001 +/- 0.022 +/- 0.015 and A_CP(pi-pi+) =
+0.048 +/- 0.039 +/- 0.025 where the first error is statistical and the second
error is systematic. These asymmetries are consistent with zero with smaller
errors than previous measurements.Comment: 12 pages, 4 figure
Scaling properties of protein family phylogenies
One of the classical questions in evolutionary biology is how evolutionary
processes are coupled at the gene and species level. With this motivation, we
compare the topological properties (mainly the depth scaling, as a
characterization of balance) of a large set of protein phylogenies with a set
of species phylogenies. The comparative analysis shows that both sets of
phylogenies share remarkably similar scaling behavior, suggesting the
universality of branching rules and of the evolutionary processes that drive
biological diversification from gene to species level. In order to explain such
generality, we propose a simple model which allows us to estimate the
proportion of evolvability/robustness needed to approximate the scaling
behavior observed in the phylogenies, highlighting the relevance of the
robustness of a biological system (species or protein) in the scaling
properties of the phylogenetic trees. Thus, the rules that govern the
incapability of a biological system to diversify are equally relevant both at
the gene and at the species level.Comment: Replaced with final published versio
Revisiting Neutron Propagation-Based Phase-Contrast Imaging and Tomography: Use of Phase Retrieval to Amplify the Effective Degree of Brilliance
Boolean Dynamics with Random Couplings
This paper reviews a class of generic dissipative dynamical systems called
N-K models. In these models, the dynamics of N elements, defined as Boolean
variables, develop step by step, clocked by a discrete time variable. Each of
the N Boolean elements at a given time is given a value which depends upon K
elements in the previous time step.
We review the work of many authors on the behavior of the models, looking
particularly at the structure and lengths of their cycles, the sizes of their
basins of attraction, and the flow of information through the systems. In the
limit of infinite N, there is a phase transition between a chaotic and an
ordered phase, with a critical phase in between.
We argue that the behavior of this system depends significantly on the
topology of the network connections. If the elements are placed upon a lattice
with dimension d, the system shows correlations related to the standard
percolation or directed percolation phase transition on such a lattice. On the
other hand, a very different behavior is seen in the Kauffman net in which all
spins are equally likely to be coupled to a given spin. In this situation,
coupling loops are mostly suppressed, and the behavior of the system is much
more like that of a mean field theory.
We also describe possible applications of the models to, for example, genetic
networks, cell differentiation, evolution, democracy in social systems and
neural networks.Comment: 69 pages, 16 figures, Submitted to Springer Applied Mathematical
Sciences Serie
Population genomics of marine zooplankton
Author Posting. © The Author(s), 2017. This is the author's version of the work. It is posted here for personal use, not for redistribution. The definitive version was published in Bucklin, Ann et al. "Population Genomics of Marine Zooplankton." Population Genomics: Marine Organisms. Ed. Om P. Rajora and Marjorie Oleksiak. Springer, 2018. doi:10.1007/13836_2017_9.The exceptionally large population size and cosmopolitan biogeographic distribution that
distinguish many – but not all – marine zooplankton species generate similarly exceptional patterns of
population genetic and genomic diversity and structure. The phylogenetic diversity of zooplankton has
slowed the application of population genomic approaches, due to lack of genomic resources for closelyrelated
species and diversity of genomic architecture, including highly-replicated genomes of many
crustaceans. Use of numerous genomic markers, especially single nucleotide polymorphisms (SNPs), is
transforming our ability to analyze population genetics and connectivity of marine zooplankton, and
providing new understanding and different answers than earlier analyses, which typically used
mitochondrial DNA and microsatellite markers. Population genomic approaches have confirmed that,
despite high dispersal potential, many zooplankton species exhibit genetic structuring among geographic
populations, especially at large ocean-basin scales, and have revealed patterns and pathways of population
connectivity that do not always track ocean circulation. Genomic and transcriptomic resources are
critically needed to allow further examination of micro-evolution and local adaptation, including
identification of genes that show evidence of selection. These new tools will also enable further
examination of the significance of small-scale genetic heterogeneity of marine zooplankton, to
discriminate genetic “noise” in large and patchy populations from local adaptation to environmental
conditions and change.Support was provided by the
US National Science Foundation to AB and RJO (PLR-1044982) and to RJO (MCB-1613856); support to
IS and MC was provided by Nord University (Norway)
Search for supersymmetry in events with four or more leptons in √s =13 TeV pp collisions with ATLAS
Results from a search for supersymmetry in events with four or more charged leptons (electrons, muons and taus) are presented. The analysis uses a data sample corresponding to 36.1 fb −1 of proton-proton collisions delivered by the Large Hadron Collider at s √ =13 TeV and recorded by the ATLAS detector. Four-lepton signal regions with up to two hadronically decaying taus are designed to target a range of supersymmetric scenarios that can be either enriched in or depleted of events involving the production and decay of a Z boson. Data yields are consistent with Standard Model expectations and results are used to set upper limits on the event yields from processes beyond the Standard Model. Exclusion limits are set at the 95% confidence level in simplified models of General Gauge Mediated supersymmetry, where higgsino masses are excluded up to 295 GeV. In R -parity-violating simplified models with decays of the lightest supersymmetric particle to charged leptons, lower limits of 1.46 TeV, 1.06 TeV, and 2.25 TeV are placed on wino, slepton and gluino masses, respectively
Search for High-Mass Resonances Decaying to τν in pp Collisions at √s=13 TeV with the ATLAS Detector
A search for high-mass resonances decaying to τν using proton-proton collisions at √s=13 TeV produced by the Large Hadron Collider is presented. Only τ-lepton decays with hadrons in the final state are considered. The data were recorded with the ATLAS detector and correspond to an integrated luminosity of 36.1 fb−1. No statistically significant excess above the standard model expectation is observed; model-independent upper limits are set on the visible τν production cross section. Heavy W′ bosons with masses less than 3.7 TeV in the sequential standard model and masses less than 2.2–3.8 TeV depending on the coupling in the nonuniversal G(221) model are excluded at the 95% credibility level
- …
