1,365 research outputs found

    Interferometric detection of spin-polarized transport in the depletion layer of a metal-GaAs Schottky barrier

    Full text link
    It is shown that the Kerr rotation of spin-polarized electrons is modulated by the distance of the electrons from the sample surface. Time-resolved Kerr rotation of optically-excited spin-polarized electrons in the depletion layer of n-doped GaAs displays fast oscillations that originate from an interference between the light reflected from the semiconductor surface and from the front of the electron distribution moving into the semiconductor. Using this effect, the dynamics of the photogenerated charge carriers in the depletion layer of the biased Schottky barrier is measured.Comment: 10 pages, 4 figure

    Signatures of dynamically polarized nuclear spins in all-electrical lateral spin transport devices

    Full text link
    The effect of nuclear spins in Fe/GaAs all-electrical spin-injection devices is investigated. At temperatures below 50 K, strong modifications of the non-local spin signal are found that are characteristic for hyperfine coupling between conduction electrons and dynamically polarized nuclear spins. The perpendicular component of the nuclear Overhauser field depolarizes electron spins near zero in-plane external magnetic field, and can suppress such dephasing when antialigned with the external field, leading to satellite peaks in a Hanle measurement. The features observed agree well with a Monte Carlo simulation of the spin diffusion equation including hyperfine interaction, and are used to study the nuclear spin dynamics and relate it to the spin polarization of injected electrons.Comment: 6 pages, 4 figure

    Spin-injection spectra of CoFe/GaAs contacts: dependence on Fe concentration, interface and annealing conditions

    Full text link
    Spin injection from Co70Fe30 and Fe contacts into bulk GaAs(001) epilayers is studied experimentally. Using nonlocal measurements, the spin polarization of the differential conductance is determined as a function of the bias voltage applied across the injection interface. The spectra reveal an interface-related minority-spin peak at forward bias and a majority-spin peak at reverse bias, and are very similar, but shifted in energy, for Co70Fe30 and for Fe contacts. An increase of the spin-injection efficiency and a shift of the spectrum correlate with the Ga-to-As ratio at the interface between CoFe and GaAs.Comment: 4 pages, 4 figure

    Temperature dependence of the nonlocal voltage in an Fe/GaAs electrical spin injection device

    Full text link
    The nonlocal spin resistance is measured as a function of temperature in a Fe/GaAs spin-injection device. For nonannealed samples that show minority-spin injection, the spin resistance is observed up to room temperature and decays exponentially with temperature at a rate of 0.018\,K1^{-1}. Post-growth annealing at 440\,K increases the spin signal at low temperatures, but the decay rate also increases to 0.030\,K1^{-1}. From measurements of the diffusion constant and the spin lifetime in the GaAs channel, we conclude that sample annealing modifies the temperature dependence of the spin transfer efficiency at injection and detection contacts. Surprisingly, the spin transfer efficiency increases in samples that exhibit minority-spin injection.Comment: 10 pages, 4 figure

    Dynamics of a localized spin excitation close to the spin-helix regime

    Full text link
    The time evolution of a local spin excitation in a (001)-confined two-dimensional electron gas subjected to Rashba and Dresselhaus spin-orbit interactions of similar strength is investigated theoretically and compared with experimental data. Specifically, the consequences of the finite spatial extension of the initial spin polarization is studied for non-balanced Rashba and Dresselhaus terms and for finite cubic Dresselhaus spin-orbit interaction. We show that the initial out-of-plane spin polarization evolves into a helical spin pattern with a wave number that gradually approaches the value q0q_0 of the persistent spin helix mode. In addition to an exponential decay of the spin polarization that is proportional to both the spin-orbit imbalance and the cubic Dresselhaus term, the finite width ww of the spin excitation reduces the spin polarization by a factor that approaches exp(q02w2/2)\exp(-q_0^2 w^2/2) at longer times.Comment: 8 pages, 7 figure

    Mode Spectroscopy and Level Coupling in Ballistic Electron Waveguides

    Full text link
    A tunable quantum point contact with modes occupied in both transverse directions is studied by magnetotransport experiments. We use conductance quantization of the one-dimensional subbands as a tool to determine the mode spectrum. A magnetic field applied along the direction of the current flow couples the modes. This can be described by an extension of the Darwin-Fock model. Anticrossings are observed as a function of the magnetic field, but not for zero field or perpendicular field directions, indicating coupling of the subbands due to nonparabolicity in the electrical confinement.Comment: 4 pages, 3 figure

    Optical polarization of localized hole spins in p-doped quantum wells

    Full text link
    The initialization of spin polarization in localized hole states is investigated using time-resolved Kerr rotation. We find that the sign of the polarization depends on the magnetic field, and the power and the wavelength of the circularly polarized pump pulse. An analysis of the spin dynamics and the spin-initialization process shows that two mechanisms are responsible for spin polarization with opposite sign: The difference of the g factor between the localized holes and the trions, as well as the capturing process of dark excitons by the localized hole states.Comment: 4 pages, 2 figure

    Two-dimensional imaging of the spin-orbit effective magnetic field

    Full text link
    We report on spatially resolved measurements of the spin-orbit effective magnetic field in a GaAs/InGaAs quantum-well. Biased gate electrodes lead to an electric-field distribution in which the quantum-well electrons move according to the local orientation and magnitude of the electric field. This motion induces Rashba and Dresselhaus effective magnetic fields. The projection of the sum of these fields onto an external magnetic field is monitored locally by measuring the electron spin-precession frequency using time-resolved Faraday rotation. A comparison with simulations shows good agreement with the experimental data.Comment: 6 pages, 4 figure

    Gate tunability of stray-field-induced electron spin precession in a GaAs/InGaAs quantum well below an interdigitated magnetized Fe grating

    Full text link
    Time-resolved Faraday rotation is used to measure the coherent electron spin precession in a GaAs/InGaAs quantum well below an interdigitated magnetized Fe grating. We show that the electron spin precession frequency can be modified by applying a gate voltage of opposite polarity to neighboring bars. A tunability of the precession frequency of 0.5 GHz/V has been observed. Modulating the gate potential with a gigahertz frequency allows the electron spin precession to be controlled on a nanosecond timescale
    corecore