4 research outputs found
A method for successful collection of multicores and gravity cores from Antarctic subglacial lakes
During the 2018–2019 Antarctic field season, the Subglacial Antarctic Lakes Scientific Access project team cleanly accessed Mercer Subglacial Lake, West Antarctica, to sample water and sediments beneath 1087 m of overlying ice. A multicorer was successful in sampling the sediment–water interface, with 4 deployments retrieving 10 cores between 0.3 and 0.4 m in length. Gravity coring was also successful, retrieving cores of 0.97 and 1.78 m in glacial diamict. However, sediment cores retrieved by the gravity cores were shorter than the core barrel penetration (as measured by mud streaks on the outside of the coring system), indicating that the system can likely be improved. This manuscript describes the design, implementation, successes, and lessons learned while coring sediments in a subglacial lake
Enhanced trace element mobilization by Earth’s ice sheets
Trace elements sustain biological productivity, yet the significance of trace element mobilization and export in subglacial runoff from ice sheets is poorly constrained at present. Here, we present size-fractionated (0.02, 0.22, and 0.45 µm) concentrations of trace elements in subglacial waters from the Greenland Ice Sheet (GrIS) and the Antarctic Ice Sheet (AIS). Concentrations of immobile trace elements (e.g., Al, Fe, Ti) far exceed global riverine and open ocean mean values and highlight the importance of subglacial aluminosilicate mineral weathering and lack of retention of these species in sediments. Concentrations are higher from the AIS than the GrIS, highlighting the geochemical consequences of prolonged water residence times and hydrological isolation that characterize the former. The enrichment of trace elements (e.g., Co, Fe, Mn, and Zn) in subglacial meltwaters compared with seawater and typical riverine systems, together with the likely sensitivity to future ice sheet melting, suggests that their export in glacial runoff is likely to be important for biological productivity. For example, our dissolved Fe concentration (20,900 nM) and associated flux values (1.4 Gmol y−1) from AIS to the Fe-deplete Southern Ocean exceed most previous estimates by an order of magnitude. The ultimate fate of these micronutrients will depend on the reactivity of the dominant colloidal size fraction (likely controlled by nanoparticulate Al and Fe oxyhydroxide minerals) and estuarine processing. We contend that ice sheets create highly geochemically reactive particulates in subglacial environments, which play a key role in trace elemental cycles, with potentially important consequences for global carbon cycling
Biogeochemical and historical drivers of microbial community composition and structure in sediments from Mercer Subglacial Lake, West Antarctica
Abstract Ice streams that flow into Ross Ice Shelf are underlain by water-saturated sediments, a dynamic hydrological system, and subglacial lakes that intermittently discharge water downstream across grounding zones of West Antarctic Ice Sheet (WAIS). A 2.06 m composite sediment profile was recently recovered from Mercer Subglacial Lake, a 15 m deep water cavity beneath a 1087 m thick portion of the Mercer Ice Stream. We examined microbial abundances, used 16S rRNA gene amplicon sequencing to assess community structures, and characterized extracellular polymeric substances (EPS) associated with distinct lithologic units in the sediments. Bacterial and archaeal communities in the surficial sediments are more abundant and diverse, with significantly different compositions from those found deeper in the sediment column. The most abundant taxa are related to chemolithoautotrophs capable of oxidizing reduced nitrogen, sulfur, and iron compounds with oxygen, nitrate, or iron. Concentrations of dissolved methane and total organic carbon together with water content in the sediments are the strongest predictors of taxon and community composition. δ¹³C values for EPS (−25 to −30‰) are consistent with the primary source of carbon for biosynthesis originating from legacy marine organic matter. Comparison of communities to those in lake sediments under an adjacent ice stream (Whillans Subglacial Lake) and near its grounding zone provide seminal evidence for a subglacial metacommunity that is biogeochemically and evolutionarily linked through ice sheet dynamics and the transport of microbes, water, and sediments beneath WAIS
The life and death of a subglacial lake in West Antarctica
Over the past 50 years, the discovery and initial investigation of subglacial lakes in Antarctica have highlighted the paleoglaciological information that may be recorded in sediments at their beds. In December 2018, we accessed Mercer Subglacial Lake, West Antarctica, and recovered the first in situ subglacial lake-sediment record—120 mm of finely laminated mud. We combined geophysical observations, image analysis, and quantitative stratigraphy techniques to estimate long-term mean lake sedimentation rates (SRs) between 0.49 ± 0.12 mm a–1 and 2.3 ± 0.2 mm a–1, with a most likely SR of 0.68 ± 0.08 mm a–1. These estimates suggest that this lake formed between 53 and 260 a before core recovery (BCR), with a most likely age of 180 ± 20 a BCR—coincident with the stagnation of the nearby Kamb Ice Stream. Our work demonstrates that interconnected subglacial lake systems are fundamentally linked to larger-scale ice dynamics and highlights that subglacial sediment archives contain powerful, century-scale records of ice history and provide a modern processbased analogue for interpreting paleo–subglacial lake facies.</jats:p
