46 research outputs found
Comparison between quantum jumps and master equation in the presence of a finite environment
Identifying weak values with intrinsic dynamical properties in modal theories
The so-called eigenvalue-eigenstate link states that no property can be associated to a quantum system unless it is in an eigenstate of the corresponding operator. This precludes the assignation of properties to unmeasured quantum systems in general. This arbitrary limitation of orthodox quantum mechanics generates many puzzling situations such as for example the impossibility to uniquely define a work distribution, an essential building block of quantum thermodynamics. Alternatively, modal theories (e.g., Bohmian mechanics) provide an ontology that always allows one to define intrinsic properties, i.e., properties of quantum systems that are detached from any possible measuring context. We prove here that Aharonov, Albert, and Vaidman's notion of a weak value can always be identified with an intrinsic dynamical property of a quantum system defined in a certain modal theory. Furthermore, the fact that weak values are experimentally accessible (as an ensemble average of weak measurements which are postselected by a strong measurement) strengthens the idea that understanding the intrinsic (unperturbed) dynamics of quantum systems is possible and useful in a given modal theory. As examples of the physical soundness of these intrinsic properties, we discuss three intrinsic Bohmian properties, viz., the dwell time, the work distribution, and the quantum noise at high frequencies
Quantifying non-Markovianity due to driving and a finite-size environment in an open quantum system
© 2017 American Physical Society.We study non-Markovian effects present in a driven qubit coupled to a finite environment using a recently proposed model developed in the context of calorimetric measurements of open quantum systems. To quantify the degree of non-Markovianity we use the Breuer-Laine-Piilo (BLP) measure [H.-P. Breuer, Phys. Rev. Lett. 103, 210401 (2009)PRLTAO0031-900710.1103/PhysRevLett.103.210401]. We show that information backflow only occurs in the case of driving, in which case we investigate the dependence of memory effects on the environment size, driving amplitude, and coupling to the environment. We show that the degree of non-Markovianity strongly depends on the ratio between the driving amplitude and the coupling strength. We also show that the degree of non-Markovianity does not decrease monotonically as a function of the environment size
Contributions to single-shot energy exchanges in open quantum systems
This is the author accepted manuscript. The final version is available from the American Physical Society via the DOI in this recordThe exchange of energy between a classical open system and its environment can be analysed for a single run of an experiment using the phase space trajectory of the system. By contrast, in the quantum regime such energy exchange processes must be defined for an {\it ensemble} of runs of the same experiment based on the reduced system density matrix. Single-shot approaches have been proposed for quantum systems that are weakly coupled to a heat bath. However, a single-shot analysis for a quantum system that is entangled or strongly interacting with external degrees of freedom has not been attempted because no system wave function exists for such a system within the standard formulation of quantum theory. Using the notion of the {\it conditional} wave function of a quantum system, we derive here an exact formula for the rate of total energy change in an open quantum system, valid for arbitrary coupling between the system and the environment. In particular, this allows us to identify three distinct contributions to the total energy flow: an external contribution coming from the explicit time dependence of the Hamiltonian, an interaction contribution associated with the interaction part of the Hamiltonian, and an entanglement contribution, directly related to the presence of entanglement between the system and its environment. Given the close connection between weak values and the conditional wave function, the approach presented here provides a new avenue for experimental studies of energy fluctuations in open quantum systems.Academy of FinlandMagnus Ehrnrooth FoundationCMMP Education NetworkEngineering and Physical Sciences Research Council (EPSRC)Royal Societ
Quantifying non-Markovianity due to driving and a finite-size environment in an open quantum system
We study non-Markovian effects present in a driven qubit coupled to a finite environment using a recently proposed model developed in the context of calorimetric measurements of open quantum systems. To quantify the degree of non-Markovianity we use the Breuer-Laine-Piilo (BLP) measure [H.-P. Breuer, Phys. Rev. Lett. 103, 210401 (2009)]. We show that information backflow only occurs in the case of driving, in which case we investigate the dependence of memory effects on the environment size, driving amplitude, and coupling to the environment. We show that the degree of non-Markovianity strongly depends on the ratio between the driving amplitude and the coupling strength. We also show that the degree of non-Markovianity does not decrease monotonically as a function of the environment size
Do seedling functional groups reflect ecological strategies of woody plant species in Caatinga?
Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an international cohort study
Background: The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on postoperative recovery needs to be understood to inform clinical decision making during and after the COVID-19 pandemic. This study reports 30-day mortality and pulmonary complication rates in patients with perioperative SARS-CoV-2 infection. Methods: This international, multicentre, cohort study at 235 hospitals in 24 countries included all patients undergoing surgery who had SARS-CoV-2 infection confirmed within 7 days before or 30 days after surgery. The primary outcome measure was 30-day postoperative mortality and was assessed in all enrolled patients. The main secondary outcome measure was pulmonary complications, defined as pneumonia, acute respiratory distress syndrome, or unexpected postoperative ventilation. Findings: This analysis includes 1128 patients who had surgery between Jan 1 and March 31, 2020, of whom 835 (74·0%) had emergency surgery and 280 (24·8%) had elective surgery. SARS-CoV-2 infection was confirmed preoperatively in 294 (26·1%) patients. 30-day mortality was 23·8% (268 of 1128). Pulmonary complications occurred in 577 (51·2%) of 1128 patients; 30-day mortality in these patients was 38·0% (219 of 577), accounting for 81·7% (219 of 268) of all deaths. In adjusted analyses, 30-day mortality was associated with male sex (odds ratio 1·75 [95% CI 1·28–2·40], p\textless0·0001), age 70 years or older versus younger than 70 years (2·30 [1·65–3·22], p\textless0·0001), American Society of Anesthesiologists grades 3–5 versus grades 1–2 (2·35 [1·57–3·53], p\textless0·0001), malignant versus benign or obstetric diagnosis (1·55 [1·01–2·39], p=0·046), emergency versus elective surgery (1·67 [1·06–2·63], p=0·026), and major versus minor surgery (1·52 [1·01–2·31], p=0·047). Interpretation: Postoperative pulmonary complications occur in half of patients with perioperative SARS-CoV-2 infection and are associated with high mortality. Thresholds for surgery during the COVID-19 pandemic should be higher than during normal practice, particularly in men aged 70 years and older. Consideration should be given for postponing non-urgent procedures and promoting non-operative treatment to delay or avoid the need for surgery. Funding: National Institute for Health Research (NIHR), Association of Coloproctology of Great Britain and Ireland, Bowel and Cancer Research, Bowel Disease Research Foundation, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, NIHR Academy, Sarcoma UK, Vascular Society for Great Britain and Ireland, and Yorkshire Cancer Research
Morphological characteristics of the digestive tract of Schizodon knerii (Steindachner, 1875), (Characiformes: Anostomidae): An anatomical, histological and histochemical study
The digestive tracts of 44 specimens of Schizodon knerii were studied using anatomical, histological and histochemical techniques. The mouth has terminal position, the lip epithelium is squamous stratified with mucous, claviform cells and taste buds, teeth have an incisive form and the tongue has a stratified squamous epithelium with mucous cells and taste buds. The oropharynx cavity is formed by gill apparatus and pharyngeal teeth. The oesophagus presented pleated mucosa, a stratified squamous epithelium with mucous cells, oesophageal glands and taste buds. The stomach presented cardiac, fundic and pyloric regions, simple prismatic epithelium with tubular glands, with none in the pyloric region. The intestine contains 11-15 pyloric caeca, a simple prismatic epithelium with brush border, goblet cells and lymphocytes. Mucosal cells, oesophageal glands and goblet cells reacted positively to PAS, amylase + PAS, Ab pH 2.5 and Ab pH 0.5. Gastric prismatic cells reacted positively to PAS, amylase + PAS, but only those in the pyloric region reacted positively to Ab pH 2.5 and Ab pH 0.5. The results improve the understanding of the anatomy of S. knerii feeding habits and the presence of mucosubstances in the epithelium, highlights the importance of glycoproteins for passing food through the digestive tract
Comparison between quantum jumps and master equation in the presence of a finite environment
We study the equivalence between the recently proposed finite environment quantum jump model and a master equation approach. We derive microscopically the master equation for a qubit coupled to a finite bosonic environment and show that the master equation is equivalent to the finite environment quantum jump model. We analytically show that both the methods produce the same moments of work when the work is defined through the two-measurement protocol excluding the interaction energy. However, when compared to the work moments computed using the power operator approach, we find a difference in the form of the work moments. To numerically verify our results, we study a qubit coupled to an environment consisting of ten two-level systems.Peer reviewe
Calorimetric measurement of work for a driven harmonic oscillator
A calorimetric measurement has recently been proposed as a promising technique to measure thermodynamic quantities in a dissipative superconducting qubit. These measurements rely on the fact that the system is projected into energy eigenstates whenever energy is exchanged with the environment. This requirement imposes a restriction on the class of systems that can be measured in this way. Here we extend the calorimetric protocol to the measurement of work in a driven quantum harmonic oscillator. We employ a scheme based on a two-level approximation that makes use of an experimentally accessible quantity and show how it relates to the work obtained through the standard two-measurement protocol. We find that the average work is well approximated in the underdamped regime for short driving times and, in the overdamped regime, for any driving time. However, this approximation fails for the variance and higher moments of work at finite temperatures. Furthermore, we show how to relate the work statistics obtained through this scheme to the work statistics given by the two-measurement protocol.Peer reviewe
