112,110 research outputs found
Universal Features of the Time Evolution of Evanescent Modes in a Left-Handed Perfect Lens
The time evolution of evanescent modes in Pendry's perfect lens proposal for
ideally lossless and homogeneous, left-handed materials is analyzed. We show
that time development of sub-wavelength resolution exhibits universal features,
independent of model details. This is due to the unavoidable near-degeneracy of
surface electromagnetic modes in the deep sub-wavelength region. By means of a
mechanical analog, it is shown that an intrinsic time scale (missed in
stationary studies) has to be associated with any desired lateral resolution. A
time-dependent cut-off length emerges, removing the problem of divergences
claimed to invalidate Pendry's proposal.Comment: 4 pages, 3 figures, title slightly changed, reference added, minor
correction
Plasmons and near-field amplification in double-layer graphene
We study the optical properties of double-layer graphene for linearly
polarized evanescent modes and discuss the in-phase and out-of-phase plasmon
modes for both, longitudinal and transverse polarization. We find a energy for
which reflection is zero, leading to exponentially amplified transmitted modes
similar to what happens in left-handed materials. For layers with equal
densities cm, we find a typical layer separation of
m to detect this amplification for transverse polarization
which may serve as an indirect observation of transverse plasmons. When the two
graphene layers lie on different chemical potentials, the exponential
amplification either follows the in-phase or out-of-phase plasmon mode
depending on the order of the low- and high-density layer. This opens up the
possibility of a tunable near-field amplifier or switch.Comment: 9 pages, 8 figure
Ricci dark energy in Chern-Simons modified gravity
In this work, we have considered the Ricci dark energy model, where the
energy density of the universe is proportional to the Ricci scalar curvature,
in the dynamic Chern-Simons modified gravity. We show that in this context the
evolution of the scale factor is similar to that displayed by the modified
Chaplygin gas.Comment: 7 pages; to appear in EPJ
Noise-Free Measurement of Harmonic Oscillators with Instantaneous Interactions
We present a method of measuring the quantum state of a harmonic oscillator
through instantaneous probe-system selective interactions of the
Jaynes-Cummings type. We prove that this scheme is robust to general
decoherence mechanisms, allowing the possibility of measuring fast-decaying
systems in the weak-coupling regime. This method could be applied to different
setups: motional states of trapped ions, microwave fields in cavity/circuit
QED, and even intra-cavity optical fields.Comment: 4 pages, no figure, published in Physical Review Letter
Wave Equations for Classical Two-Component Proca Fields in Curved Spacetimes with Torsionless Affinities
The world formulation of the full theory of classical Proca fields in
generally relativistic spacetimes is concisely reviewed and the entire set of
pertinent field equations is transcribed in a straightforward way into the
framework of one of the Infeld-van der Waerden formalisms. Some well-known
calculational techniques are then utilized for deriving the wave equations that
control the propagation of the fields allowed for. It appears that no
interaction couplings between such fields and electromagnetic curvatures are
carried by the wave equations at issue. What results is, in effect, that the
only interactions which ultimately occur in the theoretical context under
consideration involve strictly Proca fields and wave functions for gravitons.Comment: Many improvements on the paper have still been made. In particular,
its title has been modified so as to conform further to one of its main aim
- …
