5,088 research outputs found
Characterisation of the secondary-neutron production in particle therapy treatments with the MONDO tracking detector
Particle Therapy (PT) is a non-invasive technique that exploits charged light ions for the irradiation of tumours that cannot be effectively treated with surgery or conventional radiotherapy. While the largest dose fraction is released to the tumour volume by the primary beam, a non-negligible amount of additional dose is due to the beam fragmentation that occurs along the path towards the target volume. In particular, the produced neutrons are particularly dangerous as they can release their energy far away from the treated area, increasing the risk of developing a radiogenic secondary malignant neoplasm after undergoing a treatment. A precise measurement of the neutron flux, energy spectrum and angular distributions is eagerly needed in order to improve the treatment planning system software, so as to predict the normal tissue toxicity in the target region and the risk of late complications in the whole body. The MONDO (MOnitor for Neutron Dose in hadrOntherapy) project is dedicated to the characterisation of the secondary ultra-fast neutrons ([20-400] MeV energy range) produced in PT. The neutron tracking system exploits the reconstruction of the recoil protons produced in two consecutive (n, p) elastic scattering interactions to measure simultaneously the neutron incoming direction and energy. The tracker active media is a matrix of thin squared scintillating fibers arranged in orthogonally oriented layers that are read out by a sensor (SBAM) based on SPAD (Single-Photon Avalanche Diode) detectors developed in collaboration with the Fondazione Bruno Kessler (FBK)
Tunnel and thermal c-axis transport in BSCCO in the normal and pseudogap state
We consider the problem of c-axis transport in double-layered cuprates, in
particular with reference to BiSrCaCuO
compounds. We exploit the effect of the two barriers on the thermal and tunnel
transport. The resulting model is able to describe accurately the normal state
c-axis resistivity in BiSrCaCuO, from the
underdoped side up to the strongly overdoped. We extend the model, without
introducing additional parameters, in order to allow for the decrease of the
barrier when an external voltage bias is applied. The extended model is found
to describe properly the c-axis resistivity for small voltage bias above the
pseudogap temperature , the c-axis resistivity for large voltage bias
even below , and the differential curves taken in mesa structures.Comment: 12 pages, 6 figures. Submitted to Superconductor Science and
Technolog
Jocs motors Una alternativa per enfortir els músculs de l’abdomen
L’objectiu de l’estudi va ser comparar l’amplitud de l’electromiografia (EMG) i la forma en què van ser coactivats els músculs abdominals durant l’execució de l’exercici d’encorbament del tronc i dos jocs motors tradicionals: el carretó i l’hula-hop. Per fer-ho, es va enregistrar l’EMG dels músculs recte, oblic extern i oblic intern de l’abdomen, durant l’execució de cada una de les tasques. A l’estudi hi van participar nou voluntaris sans, sense antecedents de cirurgia abdominal, lesions raquídies o síndrome de dolor lumbar. L’amplitud de l’EMG va ser amitjanada i normalitzada respecte a la contracció voluntària màxima. Es va realitzar un ANOVA de dos factors (múscul/tasca) i un post hoc Tukey per examinar les diferències en l’activitat elèctrica de cada múscul entre les tasques i en cada tasca entre els músculs. Els jocs analitzats van produir nivells d’activitat elèctrica superiors als generats per l’encorbament del tronc, i en conseqüència, han de ser considerats com un complement o una alternativa als exercicis d’enfortiment abdominal. El carretó va generar un important nivell de coactivació abdominal, encara que va activar principalment l’oblic extern de l’abdomen. A l’hula-hop, les diferències entre els músculs no van ser estadísticament significatives
Disorder Effects in Two-Dimensional d-wave Superconductors
Influence of weak nonmagnetic impurities on the single-particle density of
states of two-dimensional electron systems with a conical
spectrum is studied. We use a nonperturbative approach, based on replica trick
with subsequent mapping of the effective action onto a one-dimensional model of
interacting fermions, the latter being treated by Abelian and non-Abelian
bosonization methods. It is shown that, in a d-wave superconductor, the density
of states, averaged over randomness, follows a nontrivial power-law behavior
near the Fermi energy: . The exponent
is calculated for several types of disorder. We demonstrate that the
property is a direct consequence of a {\it continuous} symmetry
of the effective fermionic model, whose breakdown is forbidden in two
dimensions. As a counter example, we consider another model with a conical
spectrum - a two-dimensional orbital antiferromagnet, where static disorder
leads to a finite due to breakdown of a {\it discrete}
(particle-hole) symmetry.Comment: 24 pages, 3 figures upon request, RevTe
Measurement of charged particle yields from therapeutic beams in view of the design of an innovative hadrontherapy dose monitor
Particle Therapy (PT) is an emerging technique, which makes use of charged particles to efficiently cure different kinds of solid tumors. The high precision in the hadrons dose deposition requires an accurate monitoring to prevent the risk of under-dosage of the cancer region or of over-dosage of healthy tissues. Monitoring techniques are currently being developed and are based on the detection of particles produced by the beam interaction into the target, in particular: charged particles, result of target and/or projectile fragmentation, prompt photons coming from nucleus de-excitation and back-to-back γ s, produced in the positron annihilation from β + emitters created in the beam interaction with the target. It has been showed that the hadron beam dose release peak can be spatially correlated with the emission pattern of these secondary particles. Here we report about secondary particles production (charged fragments and prompt γ s) performed at different beam and energies that have a particular relevance for PT applications: 12C beam of 80 MeV/u at LNS, 12C beam 220 MeV/u at GSI, and 12C, 4He, 16O beams with energy in the 50–300 MeV/u range at HIT. Finally, a project for a multimodal dose-monitor device exploiting the prompt photons and charged particles emission will be presented
In-room test results at CNAO of an innovative PT treatments online monitor (Dose Profiler)
The use of C, He and O ions as projectiles in Particle Therapy (PT) treatments is getting more and more widespread as a consequence of their enhanced relative biological effectiveness and oxygen enhancement ratio, when compared to the protons one. The advantages related to the incoming radiation improved efficacy are requiring an accurate online monitor of the dose release spatial distribution. Such monitor is necessary to prevent unwanted damage to the tissues surrounding the tumour that can arise, for example, due to morphological changes occurred in the patient during the treatment with respect to the initial CT scan. PT treatments with ions can be monitored by detecting the secondary radiation produced by the primary beam interactions with the patient body along the path towards the target volume. Charged fragments produced in the nuclear process of projectile fragmentation can be emitted at large angles with respect to the incoming beam direction and can be detected with high efficiency in a nearly background-free environment. The Dose Profiler (DP) detector, developed within the INSIDE project, is a scintillating fibre tracker that allows an online reconstruction and backtracking of such secondary charged fragments. The construction and preliminary in-room tests performed on the DP, carried out using the 12C ions beam of the CNAO treatment centre using an anthropomorphic phantom as a target, will be reviewed in this contribution. The impact of the secondary fragments interactions with the patient body will be discussed in view of a clinical application. Furthermore, the results implications for a pre-clinical trial on CNAO patients, foreseen in 2019, will be discussed
Study of the time and space distribution of beta+ emitters from 80 MeV/u carbon ion beam irradiation on PMMA
Proton and carbon ion therapy is an emerging technique used for the treatment
of solid cancers. The monitoring of the dose delivered during such treatments
and the on-line knowledge of the Bragg peak position is still a matter of
research. A possible technique exploits the collinear 511\ \kilo\electronvolt
photons produced by positrons annihilation from emitters created by
the beam. This paper reports rate measurements of the 511\ \kilo\electronvolt
photons emitted after the interactions of a 80\ \mega\electronvolt / u fully
stripped carbon ion beam at the Laboratori Nazionali del Sud (LNS) of INFN,
with a Poly-methyl methacrylate target. The time evolution of the
rate was parametrized and the dominance of emitters over the other
species (, , ) was observed, measuring the fraction of
carbon ions activating emitters . The
average depth in the PMMA of the positron annihilation from emitters
was also measured, D_{\beta^+}=5.3\pm1.1\ \milli\meter, to be compared to the
expected Bragg peak depth D_{Bragg}=11.0\pm 0.5\ \milli\meter obtained from
simulations
Juegos motores Una alternativa para fortalecer los músculos del abdomen
El objetivo del estudio fue comparar la amplitud de la electromiografía (EMG) y el modo en que fueron coactivados los músculos abdominales durante la ejecución del ejercicio de encorvamiento del tronco y dos juegos motores tradicionales: la carretilla y el hula hop. Para ello, se registró la EMG de los músculos rectus, obliquus externus y obliquus internus abdominis durante la ejecución de cada una de las tareas. En el estudio participaron nueve voluntarios sanos sin antecedentes de cirugía abdominal, lesiones raquídeas o síndrome de dolor lumbar. La amplitud de la EMG fue promediada y normalizada respecto a la contracción voluntaria máxima. Se realizó un ANOVA de dos factores (músculo/tarea) y un post hoc Tukey para examinar las diferencias en la actividad eléctrica de cada músculo entre las tareas y en cada tarea entre los músculos. Los juegos analizados produjeron niveles de actividad eléctrica superiores a los generados por el encorvamiento del tronco, por lo que deben ser considerados como un complemento o una alternativa a los ejercicios de fortalecimiento abdominal. La carretilla generó un importante nivel de coactivación abdominal, aunque activó principalmente al obliquus externus abdominis. En el hula hop, las diferencias entre los músculos no fueron estadísticamente significativas
Charged particle's flux measurement from PMMA irradiated by 80 MeV/u carbon ion beam
Hadrontherapy is an emerging technique in cancer therapy that uses beams of
charged particles. To meet the improved capability of hadrontherapy in matching
the dose release with the cancer position, new dose monitoring techniques need
to be developed and introduced into clinical use. The measurement of the fluxes
of the secondary particles produced by the hadron beam is of fundamental
importance in the design of any dose monitoring device and is eagerly needed to
tune Monte Carlo simulations. We report the measurements done with charged
secondary particles produced from the interaction of a 80 MeV/u fully stripped
carbon ion beam at the INFN Laboratori Nazionali del Sud, Catania, with a
Poly-methyl methacrylate target. Charged secondary particles, produced at
90 with respect to the beam axis, have been tracked with a drift
chamber, while their energy and time of flight has been measured by means of a
LYSO scintillator. Secondary protons have been identified exploiting the energy
and time of flight information, and their emission region has been
reconstructed backtracking from the drift chamber to the target. Moreover a
position scan of the target indicates that the reconstructed emission region
follows the movement of the expected Bragg peak position. Exploting the
reconstruction of the emission region, an accuracy on the Bragg peak
determination in the submillimeter range has been obtained. The measured
differential production rate for protons produced with 83 MeV and emitted at 90 with respect to the beam line is: .Comment: 13 pages, 9 figure
Scintillating fiber devices for particle therapy applications
Particle Therapy (PT) is a radiation therapy technique in which solid tumors are treated with charged ions and exploits the achievable highly localized dose delivery, allowing to spare healthy tissues and organs at risk. The development of a range monitoring technique to be used on-line, during the treatment, capable to reach millimetric precision is considered one of the important steps towards an optimization of the PT efficacy and of the treatment quality. To this aim, charged secondary particles produced in the nuclear interactions between the beam particles and the patient tissues can be exploited. Besides charged secondaries, also neutrons are produced in nuclear interactions. The secondary neutron component might cause an undesired and not negligible dose deposition far away from the tumor region, enhancing the risk of secondary malignant neoplasms that can develop even years after the treatment. An accurate neutron characterization (flux, energy and emission profile) is hence needed for a better evaluation of long-term complications. In this contribution two tracker detectors, both based on scintillating fibers, are presented. The first one, named Dose Profiler (DP), is planned to be used as a beam range monitor in PT treatments with heavy ion beams, exploiting the charged secondary fragments production. The DP is currently under development within the INSIDE (Innovative Solutions for In-beam DosimEtry in hadrontherapy) project. The second one is dedicated to the measurement of the fast and ultrafast neutron component produced in PT treatments, in the framework of the MONDO (MOnitor for Neutron Dose in hadrOntherapy) project. Results of the first calibration tests performed at the Trento Protontherapy center and at CNAO (Italy) are reported, as well as simulation studies
- …
