1,552 research outputs found
The law of action and reaction for the effective force in a nonequilibrium colloidal system
We study a nonequilibrium Langevin many-body system containing two 'test'
particles and many 'background' particles. The test particles are spatially
confined by a harmonic potential, and the background particles are driven by an
external driving force. Employing numerical simulations of the model, we
formulate an effective description of the two test particles in a
nonequilibrium steady state. In particular, we investigate several different
definitions of the effective force acting between the test particles. We find
that the law of action and reaction does not hold for the total mechanical
force exerted by the background particles, but that it does hold for the
thermodynamic force defined operationally on the basis of an idea used to
extend the first law of thermodynamics to nonequilibrium steady states.Comment: 13 page
The order-disorder transition in colloidal suspensions under shear flow
We study the order-disorder transition in colloidal suspensions under shear
flow by performing Brownian dynamics simulations. We characterize the
transition in terms of a statistical property of time-dependent maximum value
of the structure factor. We find that its power spectrum exhibits the power-law
behaviour only in the ordered phase. The power-law exponent is approximately -2
at frequencies greater than the magnitude of the shear rate, while the power
spectrum exhibits the -type fluctuations in the lower frequency regime.Comment: 11 pages, 10 figures, v.2: We have made some small improvements on
presentation
Spin transport in ferromagnet-InSb nanowire quantum devices
Signatures of Majorana zero modes (MZMs), which are the building blocks for
fault-tolerant topological quantum computing, have been observed in
semiconductor nanowires (NW) with strong spin-orbital-interaction (SOI), such
as InSb and InAs NWs with proximity-induced superconductivity. Realizing
topological superconductivity and MZMs in this most widely-studied platform
also requires eliminating spin degeneracy, which is realized by applying a
magnetic field to induce a helical gap. However, the applied field can
adversely impact the induced superconducting state in the NWs and also places
geometric restrictions on the device, which can affect scaling of future
MZM-based quantum registers. These challenges could be circumvented by
integrating magnetic elements with the NWs. With this motivation, in this work
we report the first experimental investigation of spin transport across InSb
NWs, which are enabled by devices with ferromagnetic (FM) contacts. We observe
signatures of spin polarization and spin-dependent transport in the
quasi-one-dimensional ballistic regime. Moreover, we show that electrostatic
gating tunes the observed magnetic signal and also reveals a transport regime
where the device acts as a spin filter. These results open an avenue towards
developing MZM devices in which spin degeneracy is lifted locally, without the
need of an applied magnetic field. They also provide a path for realizing
spin-based devices that leverage spin-orbital states in quantum wires.Comment: 30 pages, 12 figure
Theoretical analysis for critical fluctuations of relaxation trajectory near a saddle-node bifurcation
A Langevin equation whose deterministic part undergoes a saddle-node
bifurcation is investigated theoretically. It is found that statistical
properties of relaxation trajectories in this system exhibit divergent
behaviors near a saddle-node bifurcation point in the weak-noise limit, while
the final value of the deterministic solution changes discontinuously at the
point. A systematic formulation for analyzing a path probability measure is
constructed on the basis of a singular perturbation method. In this
formulation, the critical nature turns out to originate from the neutrality of
exiting time from a saddle-point. The theoretical calculation explains results
of numerical simulations.Comment: 18pages, 17figures.The version 2, in which minor errors have been
fixed, will be published in Phys. Rev.
Two Langevin equations in the Doi-Peliti formalism
A system-size expansion method is incorporated into the Doi-Peliti formalism
for stochastic chemical kinetics. The basic idea of the incorporation is to
introduce a new decomposition of unity associated with a so-called Cole-Hopf
transformation. This approach elucidates a relationship between two different
Langevin equations; one is associated with a coherent-state path-integral
expression and the other describes density fluctuations. A simple reaction
scheme is investigated as an illustrative example.Comment: 14page
Randomized accuracy-aware program transformations for efficient approximate computations
Despite the fact that approximate computations have come to dominate many areas of computer science, the field of program transformations has focused almost exclusively on traditional semantics-preserving transformations that do not attempt to exploit the opportunity, available in many computations, to acceptably trade off accuracy for benefits such as increased performance and reduced resource consumption.
We present a model of computation for approximate computations and an algorithm for optimizing these computations. The algorithm works with two classes of transformations: substitution transformations (which select one of a number of available implementations for a given function, with each implementation offering a different combination of accuracy and resource consumption) and sampling transformations (which randomly discard some of the inputs to a given reduction). The algorithm produces a (1+ε) randomized approximation to the optimal randomized computation (which minimizes resource consumption subject to a probabilistic accuracy specification in the form of a maximum expected error or maximum error variance).National Science Foundation (U.S.). (Grant number CCF-0811397)National Science Foundation (U.S.). (Grant number CCF-0905244)National Science Foundation (U.S.). (Grant number CCF-0843915)National Science Foundation (U.S.). (Grant number CCF-1036241)National Science Foundation (U.S.). (Grant number IIS-0835652)United States. Dept. of Energy. (Grant Number DE-SC0005288)Alfred P. Sloan Foundation. Fellowshi
Imprinting the memory into paste and its visualization as crack patterns in drying process
In the drying process of paste, we can imprint into the paste the order how
it should be broken in the future. That is, if we vibrate the paste before it
is dried, it remembers the direction of the initial external vibration, and the
morphology of resultant crack patterns is determined solely by the memory of
the direction. The morphological phase diagram of crack patterns and the
rheological measurement of the paste show that this memory effect is induced by
the plasticity of paste.Comment: 4 pages, 3 figures, submitted to JPS
Slow decay of dynamical correlation functions for nonequilibrium quantum states
A property of dynamical correlation functions for nonequilibrium states is
discussed. We consider arbitrary dimensional quantum spin systems with local
interaction and translationally invariant states with nonvanishing current over
them. A correlation function between local charge and local Hamiltonian at
different spacetime points is shown to exhibit slow decay.Comment: typos correcte
- …
