12,914 research outputs found
Interspecific differences in the larval performance of Pieris butterflies (Lepidoptera: Pieridae) are associated with differences in the glucosinolate profiles of host plants
The tremendous diversity of plants and herbivores has arisen from a coevolutionary relationship characterized by plant defense and herbivore counter adaptation. Pierid butterfly species feed on Brassicales plants that produce glucosinolates as a chemical deterrent against herbivory. In turn, the larvae of pierids have nitrile specifier proteins (NSPs) that are expressed in their gut and disarm glucosinolates. Pierid butterflies are known to have diversified in response to glucosinolate diversification in Brassicales. Therefore, each pierid species is expected to have a spectrum of host plants characterized by specific glucosinolate profiles. In this study, we tested whether the larval performance of different Pieris species, a genus in Pieridae (Lepidoptera: Pieridae), was associated with plant defense traits of putative host plants. We conducted feeding assays using larvae of three Pieris species and 10 species of the Brassicaceae family possessing different leaf physical traits and glucosinolate profile measurements. The larvae of Pieris rapae responded differently in the feeding assays compared with the other two Pieris species. This difference was associated with differences in glucosinolate profiles but not with variations in physical traits of the host plants. This result suggests that individual Pieris species are adapted to a subset of glucosinolate profiles within the Brassicaceae. Our results support the idea that the host ranges of Pieris species depend on larval responses to glucosinolate diversification in the host species, supporting the hypothesis of coevolution between butterflies and host plants mediated by the chemical arms race
Hydrodynamic Simulations of Counterrotating Accretion Disks
Hydrodynamic simulations have been used to study accretion disks consisting
of counterrotating components with an intervening shear layer(s).
Configurations of this type can arise from the accretion of newly supplied
counterrotating matter onto an existing corotating disk. The grid-dependent
numerical viscosity of our hydro code is used to simulate the influence of a
turbulent viscosity of the disk. Firstly, we consider the case where the gas
well above the disk midplane rotates with angular rate +\Omega(r) and that well
below has the same properties but rotates with rate -\Omega(r). We find that
there is angular momentum annihilation in a narrow equatorial boundary layer in
which matter accretes supersonically with a velocity which approaches the
free-fall velocity and the average accretion speed of the disk can be
enormously larger than that for a conventional \alpha-disk rotating in one
direction. Secondly, we consider the case of a corotating accretion disk for
rr_t. In this case we observed, that
matter from the annihilation layer lost its stability and propagated inward
pushing matter of inner regions of the disk to accrete. Thirdly, we
investigated the case where counterrotating matter inflowing from large radial
distances encounters an existing corotating disk. Friction between the
inflowing matter and the existing disk is found to lead to fast boundary layer
accretion along the disk surfaces and to enhanced accretion in the main disk.
These models are pertinent to the formation of counterrotating disks in
galaxies and possibly in Active Galactic Nuclei and in X-ray pulsars in binary
systems.Comment: LaTeX, 18 pages, to appear in Ap
The Dense Plasma Torus Around the Nucleus of an Active Galaxy NGC 1052
A subparsec-scale dense plasma torus around an active galactic nucleus (AGN)
is unveiled. We report on very-long-baseline interferometry (VLBI) observations
at 2.3, 8.4, and 15.4 GHz towards the active galaxy NGC 1052. The convex
spectra of the double-sided jets and the nucleus imply that synchrotron
emission is obscured through free--free absorption (FFA) by the foreground cold
dense plasma. A trichromatic image was produced to illustrate the distribution
of the FFA opacity. We found a central condensation of the plasma which covers
about 0.1 pc and 0.7 pc of the approaching and receding jets, respectively. A
simple explanation for the asymmetric distribution is the existence of a thick
plasma torus perpendicular to the jets. We also found an ambient FFA absorber,
whose density profile can be ascribed to a spherical distribution of the
isothermal King model. The coexistence of torus-like and spherical
distributions of the plasma suggests a transition from radial accretion to
rotational accretion around the nucleus.Comment: 10 pages, to appear in Publ. Astron. Soc. Japan, vol.53, No.2 (2001
Affleck-Dine leptogenesis via multiscalar evolution in a supersymmetric seesaw model
A leptogenesis scenario in a supersymmetric standard model extended with
introducing right-handed neutrinos is reconsidered. Lepton asymmetry is
produced in the condensate of a right-handed sneutrino via the Affleck-Dine
mechanism. The LH_u direction develops large value due to a negative effective
mass induced by the right-handed sneutrino condensate through the Yukawa
coupling of the right-handed neutrino, even if the minimum during the inflation
is fixed at the origin. The lepton asymmetry is nonperturbatively transfered to
the LH_u direction by this Yukawa coupling.Comment: 19 pages, 3 figures. Revised version for publication. The model was
modified to fix some problem
Scalable Similarity Search for Molecular Descriptors
Similarity search over chemical compound databases is a fundamental task in
the discovery and design of novel drug-like molecules. Such databases often
encode molecules as non-negative integer vectors, called molecular descriptors,
which represent rich information on various molecular properties. While there
exist efficient indexing structures for searching databases of binary vectors,
solutions for more general integer vectors are in their infancy. In this paper
we present a time- and space- efficient index for the problem that we call the
succinct intervals-splitting tree algorithm for molecular descriptors (SITAd).
Our approach extends efficient methods for binary-vector databases, and uses
ideas from succinct data structures. Our experiments, on a large database of
over 40 million compounds, show SITAd significantly outperforms alternative
approaches in practice.Comment: To be appeared in the Proceedings of SISAP'1
Spontaneous alloying in binary metal microclusters - A molecular dynamics study -
Microcanonical molecular dynamics study of the spontaneous alloying(SA),
which is a manifestation of fast atomic diffusion in a nano-sized metal
cluster, is done in terms of a simple two dimensional binary Morse model.
Important features observed by Yasuda and Mori are well reproduced in our
simulation. The temperature dependence and size dependence of the SA phenomena
are extensively explored by examining long time dynamics. The dominant role of
negative heat of solution in completing the SA is also discussed. We point out
that a presence of melting surface induces the diffusion of core atoms even if
they are solid-like. In other words, the {\it surface melting} at substantially
low temperature plays a key role in attaining the SA.Comment: 15 pages, 12 fgures, Submitted to Phys.Rev.
- …
