61 research outputs found
The Evolution of Compact Binary Star Systems
We review the formation and evolution of compact binary stars consisting of
white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and
BHs are thought to be the primary astrophysical sources of gravitational waves
(GWs) within the frequency band of ground-based detectors, while compact
binaries of WDs are important sources of GWs at lower frequencies to be covered
by space interferometers (LISA). Major uncertainties in the current
understanding of properties of NSs and BHs most relevant to the GW studies are
discussed, including the treatment of the natal kicks which compact stellar
remnants acquire during the core collapse of massive stars and the common
envelope phase of binary evolution. We discuss the coalescence rates of binary
NSs and BHs and prospects for their detections, the formation and evolution of
binary WDs and their observational manifestations. Special attention is given
to AM CVn-stars -- compact binaries in which the Roche lobe is filled by
another WD or a low-mass partially degenerate helium-star, as these stars are
thought to be the best LISA verification binary GW sources.Comment: 105 pages, 18 figure
Oxidative stress-driven parvalbumin interneuron impairment as a common mechanism in models of schizophrenia.
Parvalbumin inhibitory interneurons (PVIs) are crucial for maintaining proper excitatory/inhibitory balance and high-frequency neuronal synchronization. Their activity supports critical developmental trajectories, sensory and cognitive processing, and social behavior. Despite heterogeneity in the etiology across schizophrenia and autism spectrum disorder, PVI circuits are altered in these psychiatric disorders. Identifying mechanism(s) underlying PVI deficits is essential to establish treatments targeting in particular cognition. On the basis of published and new data, we propose oxidative stress as a common pathological mechanism leading to PVI impairment in schizophrenia and some forms of autism. A series of animal models carrying genetic and/or environmental risks relevant to diverse etiological aspects of these disorders show PVI deficits to be all accompanied by oxidative stress in the anterior cingulate cortex. Specifically, oxidative stress is negatively correlated with the integrity of PVIs and the extracellular perineuronal net enwrapping these interneurons. Oxidative stress may result from dysregulation of systems typically affected in schizophrenia, including glutamatergic, dopaminergic, immune and antioxidant signaling. As convergent end point, redox dysregulation has successfully been targeted to protect PVIs with antioxidants/redox regulators across several animal models. This opens up new perspectives for the use of antioxidant treatments to be applied to at-risk individuals, in close temporal proximity to environmental impacts known to induce oxidative stress
Linking early-life NMDAR hypofunction and oxidative stress in schizophrenia pathogenesis.
Molecular, genetic and pathological evidence suggests that deficits in GABAergic parvalbumin-positive interneurons contribute to schizophrenia pathophysiology through alterations in the brain's excitation-inhibition balance that result in impaired behaviour and cognition. Although the factors that trigger these deficits are diverse, there is increasing evidence that they converge on a common pathological hub that involves NMDA receptor hypofunction and oxidative stress. These factors have been separately linked to schizophrenia pathogenesis, but evidence now suggests that they are mechanistically interdependent and contribute to a common schizophrenia-associated pathology
Small-Group Learning in an Upper-Level University Biology Class Enhances Academic Performance and Student Attitudes Toward Group Work
To improve science learning, science educators' teaching tools need to address two major criteria: teaching practice should mirror our current understanding of the learning process; and science teaching should reflect scientific practice. We designed a small-group learning (SGL) model for a fourth year university neurobiology course using these criteria and studied student achievement and attitude in five course sections encompassing the transition from individual work-based to SGL course design. All students completed daily quizzes/assignments involving analysis of scientific data and the development of scientific models. Students in individual work-based (Individualistic) sections usually worked independently on these assignments, whereas SGL students completed assignments in permanent groups of six. SGL students had significantly higher final exam grades than Individualistic students. The transition to the SGL model was marked by a notable increase in 10th percentile exam grade (Individualistic: 47.5%; Initial SGL: 60%; Refined SGL: 65%), suggesting SGL enhanced achievement among the least prepared students. We also studied student achievement on paired quizzes: quizzes were first completed individually and submitted, and then completed as a group and submitted. The group quiz grade was higher than the individual quiz grade of the highest achiever in each group over the term. All students – even term high achievers –could benefit from the SGL environment. Additionally, entrance and exit surveys demonstrated student attitudes toward SGL were more positive at the end of the Refined SGL course. We assert that SGL is uniquely-positioned to promote effective learning in the science classroom
Treatment-Induced Tumor Dormancy through YAP-Mediated Transcriptional Reprogramming of the Apoptotic Pathway
Eradicating tumor dormancy that develops following epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) treatment of EGFR-mutant non-small cell lung cancer, is an attractive therapeutic strategy but the mechanisms governing this process are poorly understood. Blockade of ERK1/2 reactivation following EGFR TKI treatment by combined EGFR/MEK inhibition uncovers cells that survive by entering a senescence-like dormant state characterized by high YAP/TEAD activity. YAP/TEAD engage the epithelial-to-mesenchymal transition transcription factor SLUG to directly repress pro-apoptotic BMF, limiting drug-induced apoptosis. Pharmacological co-inhibition of YAP and TEAD, or genetic deletion of YAP1, all deplete dormant cells by enhancing EGFR/MEK inhibition-induced apoptosis. Enhancing the initial efficacy of targeted therapies could ultimately lead to prolonged treatment responses in cancer patients
A review on herbal antiasthmatics
In traditional systems of medicine, many plants have been documented to be useful for the treatment of various respiratory disorders including asthma. In the last two decades the use of medicinal plants and natural products has been increased dramatically all over the world. Current synthetic drugs used in pharmacotherapy of asthma are unable to act at all the stages and targets of asthma. However some herbal alternatives employed in asthma are proven to provide symptomatic relief and assist in the inhibition of disease progression also. The herbs have shown interesting results in various target specific biological activities such as bronchodilation, mast cell stabilization, anti-anaphylactic, anti-inflammatory, anti-spasmodic, anti-allergic, immunomodulatory and inhibition of mediators such as leukotrienes, lipoxygenase, cyclooxygenase, platelet activating, phosphodiesterase and cytokine, in the treatment of asthma. This paper is an attempt to classify these pharmacological and clinical findings based on their possible mechanism of action reported. It also signifies the need for development of polyherbal formulations containing various herbs acting at particular sites of the pathophysiological cascade of asthma for prophylaxis as well as for the treatment of asthma
Distinct Type of Transmission Barrier Revealed by Study of Multiple Prion Determinants of Rnq1
Prions are self-propagating protein conformations. Transmission of the prion state between non-identical proteins, e.g. between homologous proteins from different species, is frequently inefficient. Transmission barriers are attributed to sequence differences in prion proteins, but their underlying mechanisms are not clear. Here we use a yeast Rnq1/[PIN+]-based experimental system to explore the nature of transmission barriers. [PIN+], the prion form of Rnq1, is common in wild and laboratory yeast strains, where it facilitates the appearance of other prions. Rnq1's prion domain carries four discrete QN-rich regions. We start by showing that Rnq1 encompasses multiple prion determinants that can independently drive amyloid formation in vitro and transmit the [PIN+] prion state in vivo. Subsequent analysis of [PIN+] transmission between Rnq1 fragments with different sets of prion determinants established that (i) one common QN-rich region is required and usually sufficient for the transmission; (ii) despite identical sequences of the common QNs, such transmissions are impeded by barriers of different strength. Existence of transmission barriers in the absence of amino acid mismatches in transmitting regions indicates that in complex prion domains multiple prion determinants act cooperatively to attain the final prion conformation, and reveals transmission barriers determined by this cooperative fold
Modelling the size separated particulate matter (SSPM10) from vehicular exhaust at traffic intersections in Mumbai
The study was carried out to predict the size separated particulate matter below 10 mum size (SSPM10) from vehicular exhausts at traffic intersections using modified general finite line source model (GFLSM). Two air quality control regions (AQCRs) were selected in Mumbai City for this study. One was industrial area (AQCR(1)) containing the busy intersection, i.e. Marol link road, with the heavy inflow of two-three wheelers. And, the other was commercial busy district area (AQCR(2)) containing the busy intersection, i.e. Dadar circle, with a heavy traffic flow especially cars. The model was applied at both the traffic intersections. The data were collected for modelling study for three winter months in 1995 using cascade impactor of nine size ranges. The prediction results revealed that modified GFLSM underpredicted the SSPM10 concentrations for all the size ranges. However, showed considerable correlation between observed and predicted values for the size range below 4.7 mum at both the intersections. The relative high concentrations observed in the coarser range of 10-4.7 mum are attributed to the resuspension of the roadside particulate matter. Hence, the amount of underprediction was more for this range, which was due to the characteristics of model that does not take into account the factor for resuspension of roadside particulate matter caused by traffic movements. The model was also applied to predict the total particulate matter for downwind distances from the road intersection. The statistical evaluation of model was done, which indicated that the model's performance was good for the finer range of particles (below 4.7 mum) with r-square values of 0.49 and 0.57 found at both the intersections in AQCR(1) and AQCR(2), respectively. However, it is not unusual that the model uncertainty is likely to exist due to data input errors and stochastic fluctuations irrespective of the models accurateness. The statistical distribution model was therefore identified using Kolmogorov-Smirnov test. At both the intersections, SSPM10 concentration data were found lognormally distributed
- …
