8 research outputs found
Movement of environmental threats modifies the relevance of the defensive eye-blink in a spatially-tuned manner.
Subcortical reflexive motor responses are under continuous cortical control to produce the most effective behaviour. For example, the excitability of brainstem circuitry subserving the defensive hand-blink reflex (HBR), a response elicited by intense somatosensory stimuli to the wrist, depends on a number of properties of the eliciting stimulus. These include face-hand proximity, which has allowed the description of an HBR response field around the face (commonly referred to as a defensive peripersonal space, DPPS), as well as stimulus movement and probability of stimulus occurrence. However, the effect of stimulus-independent movements of objects in the environment has not been explored. Here we used virtual reality to test whether and how the HBR-derived DPPS is affected by the presence and movement of threatening objects in the environment. In two experiments conducted on 40 healthy volunteers, we observed that threatening arrows flying towards the participant result in DPPS expansion, an effect directionally-tuned towards the source of the arrows. These results indicate that the excitability of brainstem circuitry subserving the HBR is continuously adjusted, taking into account the movement of environmental objects. Such adjustments fit in a framework where the relevance of defensive actions is continually evaluated, to maximise their survival value
Action ability modulates time‑to‑collision judgments
Time-to-collision (TTC) underestimation has been interpreted as an adaptive response that allows observers to have more time to engage in a defensive behaviour. This bias seems, therefore, strongly linked to action preparation. There is evidence that the observer’s physical fitness modulates the underestimation effect so that people who need more time to react (i.e. those with less physical fitness) show a stronger underestimation effect. Here we investigated whether this bias is influenced by the momentary action capability of the observers. In the first experiment, participants estimated the time-to-collision of threatening or non-threatening stimuli while being mildly immobilized (with a chin rest) or while standing freely. Having reduced the possibility of movement led participants to show more underestimation of the approaching stimuli. However, this effect was not stronger for threatening relative to non-threatening stimuli. The effect of the action capability found in the first experiment could be interpreted as an expansion of peripersonal space (PPS). In the second experiment, we thus investigated the generality of this effect using an established paradigm to measure the size of peripersonal space. Participants bisected lines from different distances while in the chin rest or standing freely. The results replicated the classic left-to-right gradient in lateral spatial attention with increasing viewing distance, but no effect of immobilization was found. The manipulation of the momentary action capability of the observers influenced the participants’ performance in the TTC task but not in the line bisection task. These results are discussed in relation to the different functions of PPS
