106,957 research outputs found
An open and extensible framework for spatially explicit land use change modelling in R: the lulccR package (0.1.0)
Land use change has important consequences for biodiversity and the
sustainability of ecosystem services, as well as for global
environmental change. Spatially explicit land use change models
improve our understanding of the processes driving change and make
predictions about the quantity and location of future and past
change. Here we present the lulccR package, an object-oriented
framework for land use change modelling written in the R programming
language. The contribution of the work is to resolve the following
limitations associated with the current land use change modelling
paradigm: (1) the source code for model implementations is
frequently unavailable, severely compromising the reproducibility of
scientific results and making it impossible for members of the
community to improve or adapt models for their own purposes; (2)
ensemble experiments to capture model structural uncertainty are
difficult because of fundamental differences between implementations
of different models; (3) different aspects of the modelling
procedure must be performed in different environments because
existing applications usually only perform the spatial allocation of
change. The package includes a stochastic ordered allocation
procedure as well as an implementation of the widely used CLUE-S
algorithm. We demonstrate its functionality by simulating land use
change at the Plum Island Ecosystems site, using a dataset included
with the package. It is envisaged that lulccR will enable future
model development and comparison within an open environment
A bioeconomic approach to derive economic values for pasture-based sheep genetic improvement programs
Microscopic origin of the optical processes in blue sapphire
Al2O3 changes from transparent to a range of intense colours depending on the chemical impurities present. In blue sapphire, Fe and Ti are incorporated; however, the chemical process that gives rise to the colour has long been debated. Atomistic modelling identifies charge transfer from Ti(III) to Fe(III) as being responsible for the characteristic blue appearance
Multispace and Multilevel BDDC
BDDC method is the most advanced method from the Balancing family of
iterative substructuring methods for the solution of large systems of linear
algebraic equations arising from discretization of elliptic boundary value
problems. In the case of many substructures, solving the coarse problem exactly
becomes a bottleneck. Since the coarse problem in BDDC has the same structure
as the original problem, it is straightforward to apply the BDDC method
recursively to solve the coarse problem only approximately. In this paper, we
formulate a new family of abstract Multispace BDDC methods and give condition
number bounds from the abstract additive Schwarz preconditioning theory. The
Multilevel BDDC is then treated as a special case of the Multispace BDDC and
abstract multilevel condition number bounds are given. The abstract bounds
yield polylogarithmic condition number bounds for an arbitrary fixed number of
levels and scalar elliptic problems discretized by finite elements in two and
three spatial dimensions. Numerical experiments confirm the theory.Comment: 26 pages, 3 figures, 2 tables, 20 references. Formal changes onl
The search for building-integrated PV materials with good aesthetic potential: a survey
Building-integrated photovoltaics (PV) is currently dominated by blue and black rectilinear forms. Greater variety of colour and form could lead to much better uptake of PV in the built environment, also increasing the potential for PV to be used as an artistic material. Listing the available PV technologies by colour gives a clearer picture of the current situation. An assessment of photostability, efficiency and price, for each material, indicates the materials that have the potential to fill the gaps in the colour spectrum. Use of combinations of materials that can be fabricated in different ways from the current, standardised, PV modules will further increase the possibilities for use in building integration, Extending the lifetimes of organic PV, dye-sensitised PV or luminescent solar concentrators will increase the possibilities for development of new PV products
Thin electron-scale layers at the magnetopause
We use data from the four Cluster satellites to examine the microphysics of a thin electron-scale layer discovered on the magnetospheric side of the magnetopause. Here the ion and electron motions are decoupled in a layer about 20 km (a few electron scales) wide, including currents and strong electric fields. In this layer the electrons are E x B drifting with the ions as a background, and the region can be described by Hall MHD physics. A unique identification of the source of the thin layer is not possible, but our observations are consistent with recent simulations showing thin layers associated with the separatrix extending far away from a reconnection diffusion region
The repeatability of self-reported exposure after miscarriage
BACKGROUND: The Avon Longitudinal Study of Pregnancy and Childhood is a prospective study of women who were resident in Avon and who were expected to deliver a baby between April 1991 and December 1992. METHODS: The study provided an opportunity to test the repeatability of responses from 220 women who experienced a miscarriage and who reported exposure to occupational substances and common household products and appliances in two questionnaires. The first questionnaire was completed in the early part of the pregnancy and the second after the miscarriage. Women were asked to score their frequency of exposure on a five-point scale from 'daily' to 'never'. Their responses were analysed to assess the degree of agreement between replies to identical questions in the two questionnaires using the kappa statistic. A new frequency variable was created which compared the replies for the two questionnaires; this was analysed for all exposures by cross-tabulation with possible explanatory variables (age of mother, social class, history of miscarriage and the time lag between questionnaires). RESULTS: In general there was good agreement in the reported exposures to 48 substances and products. The results showed a small and consistent pattern of reporting exposures less frequently in the second questionnaire, i.e. after miscarriage. This was not explained by the analysis of possible confounding variables. Given the literature, the authors had expected to find a shift in the opposite direction. CONCLUSION: The study reinforces the need to be cautious when using the results from single surveys of retrospective self-reported exposure
Defect chemistry of Ti and Fe impurities and aggregates in Al2O3
We report a theoretical evaluation of the properties of iron and titanium impurities in sapphire (corundum structured α-Al2O3). Calculations using analytical force fields have been performed on the defect structure with the metals present in isolated, co-doped and tri-cluster configurations. Crystal field parameters have been calculated with good agreement to available experimental data. When titanium and iron are present in neighbouring face and edge-sharing orientations, the overlap of the d-orbitals facilitates an intervalence charge transfer (FeIII/TiIII → FeII/TiIV) with an associated optical excitation energy of 1.85 eV and 1.76 eV in the respective configurations. Electronic structure calculations based on density functional theory confirm that FeIII/TiIII is the ground-state configuration for the nearest-neighbour pairs, in contrast to the often considered FeII/TiIV pair. Homonuclear intervalence charge transfer energies between both FeIII/FeII and TiIV/TiIII species have also been calculated, with the energy lying in the infra-red region. Investigation of multiple tri-clusters of iron and titanium identified one stable configuration, TiIII–(TiIV/FeII), with the energy of electron transfer remaining unchanged
Creative use of BIPV materials: barriers and solutions
Inventive use of photovoltaic (PV) materials in architecture can be developed through use of PV in artworks. This is particularly important in increasing the uptake of building-integrated building-integrated photovoltaics (BIPV), by developing novel methods of combining and installing PV materials. Current examples of PV artwork and design are examined, from small to large scale, to assess the current design limitations. The design of two PV artworks is discussed in detail, including an artwork that uses the principle of the luminescent solar concentrator (LSC), to show the way in which design hurdles are discovered and overcome. Challenges range from difficulties in obtaining small quantities of PV materials; the balance between efficiency and artistic effect; through to technical and siting issues that an artist must address when designing a functional PV structure. Methods of overcoming these barriers are explored, including the use of lumogen dyes in encapsulant materials
Self-Consistent Theory of the Gain Linewidth for Quantum Cascade Lasers
The linewidth in intersubband transitions can be significantly reduced below
the sum of the lifetime broadening for the involved states, if the scattering
environment is similar for both states. This is studied within a nonequilibrium
Green function approach here. We find that the effect is of particular
relevance for a recent, relatively low doped, THz quantum cascade laser.Comment: 3 pages, figures include
- …
