212 research outputs found

    Geothermal ecosystems on Mt. Erebus, Antarctica, support diverse and taxonomically novel biota

    Get PDF
    Mt. Erebus, Antarctica, is the southernmost active volcano in the world and harbors diverse geothermally unique ecosystems, including "Subglacial"and "Exposed"features, surrounded by a vast desert of ice and snow. Previous studies, while limited in scope, have highlighted the unique and potentially endemic biota of Mt. Erebus. Here, we provide an amplicon-based biodiversity study across all domains of life and all types of geothermal features, with physicochemical and biological data from 48 samples (39 Exposed and 9 Subglacial) collected through various field seasons. We found potentially high taxonomic novelty among prokaryotes and fungi, supporting past hypotheses of high endemism due to the distinctive and isolated environment; in particular, the large number of taxonomically divergent fungal sequences was surprising. We found that different site types had unique physicochemistry and biota; Exposed sites were warmer than Subglacial (median: 40°C versus 10°C for Exposed and Subglacial, respectively) and tended to have more photosynthetic organisms (Cyanobacteria and Chlorophyta). Subglacial sites had more Actinobacteriota, correlated with greater concentrations of Ca and Mg present. Our results also suggest potential human impacts on these remote, highly significant sites, finding evidence for fungal taxa normally associated with wood decay. In this study, we provide a blueprint for future work aimed at better understanding the novel biota of Mt. Erebus

    The smaller vesicomyid bivalves in the genus Isorropodon (Bivalvia, Vesicomyidae, Pliocardiinae) also harbour chemoautotrophic symbionts

    Get PDF
    Species of Isorropodon are vesicomyid bivalves for which little information is available regarding host phylogeny and bacterial symbioses. In this study we investigated the symbioses in three Isorropodon species from three cold seep areas: Isorropodon bigoti (Gulf of Guinea), Isorropodon megadesmus (Gulf of Cadiz) and Isorropodon perplexum (Eastern Mediterranean). Analysis of bacterial 16S ribosomal RNA gene sequences demonstrated that each vesicomyid species harbours a single symbiont phylotype, that symbionts from the three species cluster together, and that they are closely related to other known vesicomyid symbionts. These results are confirmed by other marker genes (encoding 23S rRNA and APS reductase) and by fluorescence in situ hybridization. Due to their extended depth range and transoceanic distribution Isorropodon species are interesting examples to further study evolutionary processes in bivalve hosts and their associated symbionts

    Effects of catchment land use on temperate mangrove forests

    Get PDF
    Human land use changes are threatening the integrity and health of coastal ecosystemsworldwide. Intensified land use for anthropogenic purposes increases sedimentation rates, pollutants, and nutrient concentrations into adjacent coastal areas, often with detrimental effects on marine life and ecosystem functioning. However, how these factors interact to influence ecosystem health in mangrove forests is poorly understood. This study investigates the effects of catchment human land use on mangrove forest architecture and sedimentary attributes at a landscape-scale. Thirty sites were selected along a gradient of human land use within a narrow latitudinal range, to minimise the effects of varying climatic conditions. Land use was quantified using spatial analysis tools with existing land use databases (LCDB5). Twenty-six forest architectural and sedimentary variables were collected from each site. The results revealed a significant effect of human land use on ten out of 26 environmental variables.Eutrophication, characterised by changes in redox potential, pH, and sediment nutrient concentrations, was strongly associated with increasing human land use. The δ15N values of sediments and leaves also indicated increased anthropogenic nitrogen input. Furthermore, the study identified a positive correlation between human land use and tree density, indicating that increased nutrient delivery from catchments contributes to enhanced mangrove growth. Propagule and seedling densities were also positively correlated with human land use, suggesting potential recruitment success mechanisms. This research underpins the complex interactions between human land use and mangrove ecosystems, revealing changes in carbon dynamics, potential alterations in ecosystem services, and a need for holistic management approaches that consider the interconnectedness of species and their environment. These findings provide essential insights for regional ecosystem models, coastal management, and restoration strategies to address the impacts of human pressures on temperate mangrove forests, even in estuaries that may be relatively healthy

    The changing form of Antarctic biodiversity

    Get PDF
    Antarctic biodiversity is much more extensive, ecologically diverse and biogeographically structured than previously thought. Understanding of how this diversity is distributed in marine and terrestrial systems, the mechanisms underlying its spatial variation, and the significance of the microbiota is growing rapidly. Broadly recognizable drivers of diversity variation include energy availability and historical refugia. The impacts of local human activities and global environmental change nonetheless pose challenges to the current and future understanding of Antarctic biodiversity. Life in the Antarctic and the Southern Ocean is surprisingly rich, and as much at risk from environmental change as it is elsewher

    Hypolithic and soil microbial community assembly along an aridity gradient in the Namib Desert

    Get PDF
    The Namib Dessert is considered the oldest desert in the world and hyperarid for the last 5 million years. However, the environmental buffering provided by quartz and other translucent rocks supports extensive hypolithic microbial communities. In this study, open soil and hypolithic microbial communities have been investigated along an East–West transect characterized by an inverse fog-rainfall gradient. Multivariate analysis showed that structurally different microbial communities occur in soil and in hypolithic zones. Using variation partitioning, we found that hypolithic communities exhibited a fog-related distribution as indicated by the significant East– West clustering. Sodium content was also an important environmental factor affecting the composition of both soil and hypolithic microbial communities. Finally, although null models for patterns in microbial communities were not supported by experimental data, the amount of unexplained variation (68–97 %) suggests that stochastic processes also play a role in the assembly of such communities in the Namib Desert.Web of Scienc

    Methane-carbon flow into the benthic food web at cold seeps – a case study from the Costa Rica subduction zone

    Get PDF
    Cold seep ecosystems can support enormous biomasses of free-living and symbiotic chemoautotrophic organisms that get their energy from the oxidation of methane or sulfide. Most of this biomass derives from animals that are associated with bacterial symbionts, which are able to metabolize the chemical resources provided by the seeping fluids. Often these systems also harbor dense accumulations of non-symbiotic megafauna, which can be relevant in exporting chemosynthetically fixed carbon from seeps to the surrounding deep sea. Here we investigated the carbon sources of lithodid crabs (Paralomis sp.) feeding on thiotrophic bacterial mats at an active mud volcano at the Costa Rica subduction zone. To evaluate the dietary carbon source of the crabs, we compared the microbial community in stomach contents with surface sediments covered by microbial mats. The stomach content analyses revealed a dominance of epsilonproteobacterial 16S rRNA gene sequences related to the free-living and epibiotic sulfur oxidiser Sulfurovum sp. We also found Sulfurovum sp. as well as members of the genera Arcobacter and Sulfurimonas in mat-covered surface sediments where Epsilonproteobacteria were highly abundant constituting 10% of total cells. Furthermore, we detected substantial amounts of bacterial fatty acids such as i-C15:0 and C17:1ω6c with stable carbon isotope compositions as low as −53‰ in the stomach and muscle tissue. These results indicate that the white microbial mats at Mound 12 are comprised of Epsilonproteobacteria and that microbial mat-derived carbon provides an important contribution to the crab's nutrition. In addition, our lipid analyses also suggest that the crabs feed on other 13C-depleted organic matter sources, possibly symbiotic megafauna as well as on photosynthetic carbon sources such as sedimentary detritus

    On the evolutionary ecology of symbioses between chemosynthetic bacteria and bivalves

    Get PDF
    Mutualistic associations between bacteria and eukaryotes occur ubiquitously in nature, forming the basis for key ecological and evolutionary innovations. Some of the most prominent examples of these symbioses are chemosynthetic bacteria and marine invertebrates living in the absence of sunlight at deep-sea hydrothermal vents and in sediments rich in reduced sulfur compounds. Here, chemosynthetic bacteria living in close association with their hosts convert CO2 or CH4 into organic compounds and provide the host with necessary nutrients. The dominant macrofauna of hydrothermal vent and cold seep ecosystems all depend on the metabolic activity of chemosynthetic bacteria, which accounts for almost all primary production in these complex ecosystems. Many of these enigmatic mutualistic associations are found within the molluscan class Bivalvia. Currently, chemosynthetic symbioses have been reported from five distinct bivalve families (Lucinidae, Mytilidae, Solemyidae, Thyasiridae, and Vesicomyidae). This brief review aims to provide an overview of the diverse physiological and genetic adaptations of symbiotic chemosynthetic bacteria and their bivalve hosts

    Comparison of different MRI-based morphometric estimates for defining neurodegeneration across the Alzheimer's disease continuum

    Get PDF
    BACKGROUND: Several neurodegeneration (N) metrics using structural MRI are used for the purpose of Alzheimer's disease (AD)-related staging, including hippocampal volume, global atrophy, and an "AD signature" composite consisting of thickness or volumetric estimates derived from regions impacted early in AD. This study sought to determine if less user-intensive estimates of global atrophy and hippocampal volume were equivalent to a thickness-based AD signature from FreeSurfer for defining N across the AD continuum (i.e., individuals who are amyloid-positive (A+)). // METHODS: Cognitively unimpaired (CU) late middle-aged and older adults, as well as A+ mild cognitive impairment (MCI) and A+ AD dementia individuals, with available CSF and structural MRI scan <1.5 years apart, were selected for the study (n = 325, mean age = 62). First, in a subsample of A+ AD dementia and matched biomarker-negative (i.e., A- and tau tangle pathology (T)-) CU controls (n = 40), we examined ROC characteristics and identified N cut-offs using Youden's J for neurofilament light chain protein (NfL) and each of three MRI-based measures: a thickness-based AD signature from FreeSurfer, hippocampal volume (using FIRST), and a simple estimate of global atrophy (the ratio of intracranial CSF segmented volume to brain tissue volume, using SPM12). Based on the results from the ROC analyses, we then examined the concordance between NfL N positivity and N positivity for each MRI-based metric using Cohen's Kappa in the remaining subsample of 285 individuals. Finally, in the full sample (n = 325), we examined the relationship between the four measures of N and group membership across the AD continuum using Kruskal-Wallis tests and Cliff's deltas. // RESULTS: The three MRI-based metrics and CSF NfL similarly discriminated between the A-T- CU (n = 20) and A+ AD (n = 20) groups (AUCs ≥0.885; ps < 0.001). Using the cut-off values derived from the ROCs to define N positivity, there was weak concordance between NfL and all three MRI-derived metrics of N in the subsample of 285 individuals (Cohen's Kappas ≤0.429). Finally, the three MRI-based measures of N and CSF NfL showed similar associations with AD continuum group (i.e., Kruskal-Wallis ps < 0.001), with relatively larger effect sizes noted when comparing the A-T- CU to the A+ MCI (Cliff's deltas ≥0.741) and A+ AD groups (Cliff's deltas ≥0.810) than to the A+T- CU (Cliff's deltas = 0.112-0.298) and A + T+ CU groups (Cliff's deltas = 0.212-0.731). // CONCLUSIONS: These findings suggest that the three MRI-based morphometric estimates and CSF NfL similarly differentiate individuals across the AD continuum on N status. In many applications, a simple estimate of global atrophy may be preferred as an MRI marker of N across the AD continuum given its methodological robustness and ease of calculation when compared to hippocampal volume or a cortical thickness AD signature

    The Effects of Wildfire on Mortality and Resources for an Arboreal Marsupial: Resilience to Fire Events but Susceptibility to Fire Regime Change

    Get PDF
    BACKGROUND: Big environmental disturbances have big ecological effects, yet these are not always what we might expect. Understanding the proximate effects of major disturbances, such as severe wildfires, on individuals, populations and habitats will be essential for understanding how predicted future increases in the frequency of such disturbances will affect ecosystems. However, researchers rarely have access to data from immediately before and after such events. Here we report on the effects of a severe and extensive forest wildfire on mortality, reproductive output and availability of key shelter resources for an arboreal marsupial. We also investigated the behavioural response of individuals to changed shelter resource availability in the post-fire environment. METHODOLOGY/PRINCIPAL FINDINGS: We fitted proximity-logging radiotransmitters to mountain brushtail possums (Trichosurus cunninghami) before, during and after the 2009 wildfires in Victoria, Australia. Surprisingly, we detected no mortality associated with the fire, and despite a significant post-fire decrease in the proportion of females carrying pouch young in the burnt area, there was no short-term post-fire population decline. The major consequence of this fire for mountain brushtail possums was the loss of over 80% of hollow-bearing trees. The types of trees preferred as shelter sites (highly decayed dead standing trees) were those most likely to collapse after fire. Individuals adapted to resource decline by being more flexible in resource selection after the fire, but not by increased resource sharing. CONCLUSIONS/SIGNIFICANCE: Despite short-term demographic resilience and behavioural adaptation following this fire, the major loss of decayed hollow trees suggests the increased frequency of stand-replacing wildfires predicted under climate change will pose major challenges for shelter resource availability for hollow-dependent fauna. Hollow-bearing trees are typically biological legacies of previous forest generations in post-fire regrowth forests but will cease to be recruited to future regrowth forests if the interval between severe fires becomes too rapid for hollow formation

    Comparison of the protein-coding genomes of three deep-sea, sulfur-oxidising bacteria: “Candidatus Ruthia magnifica”, “Candidatus Vesicomyosocius okutanii” and Thiomicrospira crunogena

    Get PDF
    Abstract Objective “ Candidatus Ruthia magnifica”, “Candidatus Vesicomyosocius okutanii” and Thiomicrospira crunogena are all sulfur-oxidising bacteria found in deep-sea vent environments. Recent research suggests that the two symbiotic organisms, “Candidatus R. magnifica” and “Candidatus V. okutanii”, may share common ancestry with the autonomously living species T. crunogena. We used comparative genomics to examine the genome-wide protein-coding content of all three species to explore their similarities. In particular, we used the OrthoMCL algorithm to sort proteins into groups of putative orthologs on the basis of sequence similarity. Results The OrthoMCL inflation parameter was tuned using biological criteria. Using the tuned value, OrthoMCL delimited 1070 protein groups. 63.5% of these groups contained one protein from each species. Two groups contained duplicate protein copies from all three species. 123 groups were unique to T. crunogena and ten groups included multiple copies of T. crunogena proteins but only single copies from the other species. “Candidatus R. magnifica” had one unique group, and had multiple copies in one group where the other species had a single copy. There were no groups unique to “Candidatus V. okutanii”, and no groups in which there were multiple “Candidatus V. okutanii” proteins but only single proteins from the other species. Results align with previous suggestions that all three species share a common ancestor. However this is not definitive evidence to make taxonomic conclusions and the possibility of horizontal gene transfer was not investigated. Methodologically, the tuning of the OrthoMCL inflation parameter using biological criteria provides further methods to refine the OrthoMCL procedure
    corecore