96 research outputs found
High efficiency In Vivo genome engineering with a simplified 15-RVD GoldyTALEN design
published_or_final_versio
Insertional mutagenesis strategies in zebrafish
We review here some recent developments in the field of insertional mutagenesis in zebrafish. We highlight the advantages and limitations of the rich body of retroviral methodologies, and we focus on the mechanisms and concepts of new transposon-based mutagenesis approaches under development, including prospects for conditional 'gene trapping' and 'gene breaking' approaches
Fin development in a cartilaginous fish and the origin of vertebrate limbs
Recent fossil finds and experimental analysis of chick and mouse embryos highlighted the lateral fin fold theory, which suggests that two pairs of limbs in tetrapods evolved by subdivision of an elongated single fin1. Here we examine fin development in embryos of the primitive cartilaginous fish, Scyliorhinus canicula (dogfish) using scanning electron microscopy and investigate expression of genes known to be involved in limb positioning, identity and patterning in higher vertebrates. Although we did not detect lateral fin folds in dogfish embryos, Engrailed-1 expression suggests that the body is compartmentalized dorso-ventrally. Furthermore, specification of limb identity occurs through the Tbx4 and Tbx5 genes, as in higher vertebrates. In contrast, unlike higher vertebrates, we did not detect Shh transcripts in dogfish fin-buds, although dHand (a gene involved in establishing Shh) is expressed. In S. canicula, the main fin axis seems to lie parallel to the body axis. 'Freeing' fins from the body axis and establishing a separate 'limb' axis has been proposed to be a crucial step in evolution of tetrapod limbs2, 3. We suggest that Shh plays a critical role in this process
Recurrent Modification of a Conserved Cis-Regulatory Element Underlies Fruit Fly Pigmentation Diversity
The development of morphological traits occurs through the collective action of networks of genes connected at the level of gene expression. As any node in a network may be a target of evolutionary change, the recurrent targeting of the same node would indicate that the path of evolution is biased for the relevant trait and network. Although examples of parallel evolution have implicated recurrent modification of the same gene and cis-regulatory element (CRE), little is known about the mutational and molecular paths of parallel CRE evolution. In Drosophila melanogaster fruit flies, the Bric-à-brac (Bab) transcription factors control the development of a suite of sexually dimorphic traits on the posterior abdomen. Female-specific Bab expression is regulated by the dimorphic element, a CRE that possesses direct inputs from body plan (ABD-B) and sex-determination (DSX) transcription factors. Here, we find that the recurrent evolutionary modification of this CRE underlies both intraspecific and interspecific variation in female pigmentation in the melanogaster species group. By reconstructing the sequence and regulatory activity of the ancestral Drosophila melanogaster dimorphic element, we demonstrate that a handful of mutations were sufficient to create independent CRE alleles with differing activities. Moreover, intraspecific and interspecific dimorphic element evolution proceeded with little to no alterations to the known body plan and sex-determination regulatory linkages. Collectively, our findings represent an example where the paths of evolution appear biased to a specific CRE, and drastic changes in function were accompanied by deep conservation of key regulatory linkages. © 2013 Rogers et al
Atoh8, a bHLH Transcription Factor, Is Required for the Development of Retina and Skeletal Muscle in Zebrafish
Math6/atoh8, a bHLH transcription factor, is thought to be indispensable for early embryonic development and likely has important roles in vertebrate tissue-specific differentiation. However, the function of Atoh8 during early development is not clear because homozygous knockout causes embryonic lethality in mice. We have examined the effects of the atoh8 gene on the differentiation of retina and skeletal muscle during early development in zebrafish.We isolated a Math6 homologue in zebrafish, designated as zebrafish atoh8. Whole -mount in situ hybridization analysis showed that zebrafish atoh8 is dynamically expressed mainly in developing retina and skeletal muscle. Atoh8-MO knock-down resulted in reduced eye size with disorganization of retinal lamination. The reduction of atoh8 function also affected the arrangement of paraxial cells and differentiated muscle fibers during somite morphogenesis.Our results show that Atoh8 is an important regulator for the development of both the retina and skeletal muscles necessary for neural retinal cell and myogenic differentiation during zebrafish embryogenesis
Fish-Specific Duplicated dmrt2b Contributes to a Divergent Function through Hedgehog Pathway and Maintains Left-Right Asymmetry Establishment Function
Gene duplication is thought to provide raw material for functional divergence and innovation. Fish-specific dmrt2b has been identified as a duplicated gene of the dmrt2a/terra in fish genomes, but its function has remained unclear. Here we reveal that Dmrt2b knockdown zebrafish embryos display a downward tail curvature and have U-shaped somites. Then, we demonstrate that Dmrt2b contributes to a divergent function in somitogenesis through Hedgehog pathway, because Dmrt2b knockdown reduces target gene expression of Hedgehog signaling, and also impairs slow muscle development and neural tube patterning through Hedgehog signaling. Moreover, the Dmrt2b morphants display defects in heart and visceral organ asymmetry, and, some lateral-plate mesoderm (LPM) markers expressed in left side are randomized. Together, these data indicate that fish-specific duplicated dmrt2b contributes to a divergent function in somitogenesis through Hedgehog pathway and maintains the common function for left-right asymmetry establishment
Zebrafish arl6ip1 Is Required for Neural Crest Development during Embryogenesis
BACKGROUND:Although the embryonic expression pattern of ADP ribosylation factor-like 6 interacting protein 1 (Arl6ip1) has been reported, its function in neural crest development is unclear. METHODS/PRINCIPAL FINDINGS:We found that knockdown of Arl6ip1 caused defective embryonic neural crest derivatives that were particularly severe in craniofacial cartilages. Expressions of the ectodermal patterning factors msxb, dlx3b, and pax3 were normal, but the expressions of the neural crest specifier genes foxd3, snai1b, and sox10 were greatly reduced. These findings suggest that arl6ip1 is essential for specification of neural crest derivatives, but not neural crest induction. Furthermore, we revealed that the streams of crestin- and sox10-expressing neural crest cells, which migrate ventrally from neural tube into trunk, were disrupted in arl6ip1 morphants. This migration defect was not only in the trunk neural crest, but also in the enteric tract where the vagal-derived neural crest cells failed to populate the enteric nervous system. We found that this migration defect was induced by dampened Shh signaling, which may have resulted from defective cilia. These data further suggested that arl6ip1 is required for neural crest migration. Finally, by double-staining of TUNEL and crestin, we confirmed that the loss of neural crest cells could not be attributed to apoptosis. CONCLUSIONS/SIGNIFICANCE:Therefore, we concluded that arl6ip1 is required for neural crest migration and sublineage specification
The Zebrafish GenomeWiki: a crowdsourcing approach to connect the long tail for zebrafish gene annotation.
A large repertoire of gene-centric data has been generated in the field of zebrafish biology. Although the bulk of these data are available in the public domain, most of them are not readily accessible or available in nonstandard formats. One major challenge is to unify and integrate these widely scattered data sources. We tested the hypothesis that active community participation could be a viable option to address this challenge. We present here our approach to create standards for assimilation and sharing of information and a system of open standards for database intercommunication. We have attempted to address this challenge by creating a community-centric solution for zebrafish gene annotation. The Zebrafish GenomeWiki is a 'wiki'-based resource, which aims to provide an altruistic shared environment for collective annotation of the zebrafish genes. The Zebrafish GenomeWiki has features that enable users to comment, annotate, edit and rate this gene-centric information. The credits for contributions can be tracked through a transparent microattribution system. In contrast to other wikis, the Zebrafish GenomeWiki is a 'structured wiki' or rather a 'semantic wiki'. The Zebrafish GenomeWiki implements a semantically linked data structure, which in the future would be amenable to semantic search. Database URL: http://genome.igib.res.in/twiki
Neuropilin-1 Modulates p53/Caspases Axis to Promote Endothelial Cell Survival
Vascular permeability factor/vascular endothelial growth factor (VPF/VEGF), one of the crucial pro-angiogenic factors, functions as a potent inhibitor of endothelial cell (EC) apoptosis. Previous progress has been made towards delineating the VPF/VEGF survival signaling downstream of the activation of VEGFR-2. Here, we seek to define the function of NRP-1 in VPF/VEGF-induced survival signaling in EC and to elucidate the concomitant molecular signaling events that are pivotal for our understanding of the signaling of VPF/VEGF. Utilizing two different in vitro cell culture systems and an in vivo zebrafish model, we demonstrate that NRP-1 mediates VPF/VEGF-induced EC survival independent of VEGFR-2. Furthermore, we show here a novel mechanism for NRP-1-specific control of the anti-apoptotic pathway in EC through involvement of the NRP-1-interacting protein (NIP/GIPC) in the activation of PI-3K/Akt and subsequent inactivation of p53 pathways and FoxOs, as well as activation of p21. This study, by elucidating the mechanisms that govern VPF/VEGF-induced EC survival signaling via NRP-1, contributes to a better understanding of molecular mechanisms of cardiovascular development and disease and widens the possibilities for better therapeutic targets
pitx2 Deficiency Results in Abnormal Ocular and Craniofacial Development in Zebrafish
Human PITX2 mutations are associated with Axenfeld-Rieger syndrome, an autosomal-dominant developmental disorder that involves ocular anterior segment defects, dental hypoplasia, craniofacial dysmorphism and umbilical abnormalities. Characterization of the PITX2 pathway and identification of the mechanisms underlying the anomalies associated with PITX2 deficiency is important for better understanding of normal development and disease; studies of pitx2 function in animal models can facilitate these analyses. A knockdown of pitx2 in zebrafish was generated using a morpholino that targeted all known alternative transcripts of the pitx2 gene; morphant embryos generated with the pitx2ex4/5 splicing-blocking oligomer produced abnormal transcripts predicted to encode truncated pitx2 proteins lacking the third (recognition) helix of the DNA-binding homeodomain. The morphological phenotype of pitx2ex4/5 morphants included small head and eyes, jaw abnormalities and pericardial edema; lethality was observed at ∼6–8-dpf. Cartilage staining revealed a reduction in size and an abnormal shape/position of the elements of the mandibular and hyoid pharyngeal arches; the ceratobranchial arches were also decreased in size. Histological and marker analyses of the misshapen eyes of the pitx2ex4/5 morphants identified anterior segment dysgenesis and disordered hyaloid vasculature. In summary, we demonstrate that pitx2 is essential for proper eye and craniofacial development in zebrafish and, therefore, that PITX2/pitx2 function is conserved in vertebrates
- …
