8 research outputs found

    Noninvasive prenatal testing using a novel analysis pipeline to screen for all autosomal fetal aneuploidies improves pregnancy management

    No full text
    Noninvasive prenatal testing by massive parallel sequencing of maternal plasma DNA has rapidly been adopted as a mainstream method for detection of fetal trisomy 21, 18 and 13. Despite the relative high accuracy of current NIPT testing, a substantial number of false-positive and false-negative test results remain. Here, we present an analysis pipeline, which addresses some of the technical as well as the biologically derived causes of error. Most importantly, it differentiates high z-scores due to fetal trisomies from those due to local maternal CNVs causing false positives. This pipeline was retrospectively validated for trisomy 18 and 21 detection on 296 samples demonstrating a sensitivity and specificity of 100%, and applied prospectively to 1350 pregnant women in the clinical diagnostic setting with a result reported in 99.9% of cases. In addition, values indicative for trisomy were observed two times for chromosome 7 and once each for chromosomes 15 and 16, and once for a segmental trisomy 18. Two of the trisomies were confirmed to be mosaic, one of which contained a uniparental disomy cell line. As placental trisomies pose a risk for low-grade fetal mosaicism as well as uniparental disomy, genome-wide noninvasive aneuploidy detection is improving prenatal management

    Human molecular cytogenetics: from cells to nucleotides

    No full text
    The field of cytogenetics has focused on studying the number, structure, function and origin of chromosomal abnormalities and the evolution of chromosomes. The development of fluorescent molecules that either directly or via an intermediate molecule bind to DNA has led to the development of fluorescent in situ hybridization (FISH), a technology linking cytogenetics to molecular genetics. This technique has a wide range of applications that increased the dimension of chromosome analysis. The field of cytogenetics is particularly important for medical diagnostics and research as well as for gene ordering and mapping. Furthermore, the increased application of molecular biology techniques, such as array-based technologies, has led to improved resolution, extending the recognized range of microdeletion/microduplication syndromes and genomic disorders. In adopting these newly expanded methods, cytogeneticists have used a range of technologies to study the association between visible chromosome rearrangements and defects at the single nucleotide level. Overall, molecular cytogenetic techniques offer a remarkable number of potential applications, ranging from physical mapping to clinical and evolutionary studies, making a powerful and informative complement to other molecular and genomic approaches. This manuscript does not present a detailed history of the development of molecular cytogenetics; however, references to historical reviews and experiments have been provided whenever possible. Herein, the basic principles of molecular cytogenetics, the technologies used to identify chromosomal rearrangements and copy number changes, and the applications for cytogenetics in biomedical diagnosis and research are presented and discussed

    Plastizitätstheorie Ihre Entwicklung und ihr derzeitiger Stand als eine der Grundlagen der Mechanischen Umformtechnik

    No full text

    Traditional Prenatal Diagnosis: Past to Present

    No full text
    corecore