116 research outputs found
A Systematic Mapping Approach of 16q12.2/FTO and BMI in More Than 20,000 African Americans Narrows in on the Underlying Functional Variation: Results from the Population Architecture using Genomics and Epidemiology (PAGE) Study
Genetic variants in intron 1 of the fat mass- and obesity-associated (FTO) gene have been consistently associated with body mass index (BMI) in Europeans. However, follow-up studies in African Americans (AA) have shown no support for some of the most consistently BMI-associated FTO index single nucleotide polymorphisms (SNPs). This is most likely explained by different race-specific linkage disequilibrium (LD) patterns and lower correlation overall in AA, which provides the opportunity to fine-map this region and narrow in on the functional variant. To comprehensively explore the 16q12.2/FTO locus and to search for second independent signals in the broader region, we fine-mapped a 646-kb region, encompassing the large FTO gene and the flanking gene RPGRIP1L by investigating a total of 3,756 variants (1,529 genotyped and 2,227 imputed variants) in 20,488 AAs across five studies. We observed associations between BMI and variants in the known FTO intron 1 locus: the SNP with the most significant p-value, rs56137030 (8.3×10-6) had not been highlighted in previous studies. While rs56137030was correlated at r2>0.5 with 103 SNPs in Europeans (including the GWAS index SNPs), this number was reduced to 28 SNPs in AA. Among rs56137030 and the 28 correlated SNPs, six were located within candidate intronic regulatory elements, including rs1421085, for which we predicted allele-specific binding affinity for the transcription factor CUX1, which has recently been implicated in the regulation of FTO. We did not find strong evidence for a second independent signal in the broader region. In summary, this large fine-mapping study in AA has substantially reduced the number of common alleles that are likely to be functional candidates of the known FTO locus. Importantly our study demonstrated that comprehensive fine-mapping in AA provides a powerful approach to narrow in on the functional candidate(s) underlying the initial GWAS findings in European populations
Impact of concomitant thyroid pathology on preoperative workup for primary hyperparathyroidism
BACKGROUND: The former standard surgical treatment in patients with primary hyperparathyroidism (pHPT) has been bilateral cervical exploration. New localization techniques and the possibility of intraoperative measurement of intact parathormone (iPTH) permit a focused, minimally invasive parathyroidectomy (MIP). The introduction of MIP without complete neck exploration leads to the potential risk of missing thyroid pathology. The aim of the present study is to evaluate the value of MIP in respect to coexisting thyroid findings and their impact on preoperative workup for primary hyperparathyroidism. METHODS: This is a prospective study including 30 consecutive patients with pHPT (median age 65 years; 17 females, 13 males). In all patients preoperative localization was performed by ultrasonography and 99m Tc-MIBI scintigraphy- Intraoperative iPTH monitoring was routinely done. RESULTS: Ten patients (33%) had a concurrent thyroid finding requiring additional thyroid surgery, and two patients (7%) with negative localization results underwent bilateral neck exploration. Therefore, MIP was attempted in 18 (60%) patients. The conversion rate to a four gland exploration was 6% (1/18). The sensitivities of 99m Tc-MIBI scanning and ultrasonography were 83.3% and 76.6%, respectively. The respective accuracy rates were 83.3% and 76.6%. Of note, the combination of the two modalities did not improve the sensitivity and accuracy in our patient population. During a median follow-up of 40 months, none of the patients developed persistent or recurrent hypocalcaemia, resulting in a 100% cure rate. CONCLUSION: Coexisting thyroid pathology is relatively frequent in patients with pHPT in our region. Among patients having pHPT without any thyroid pathology, the adenoma localization is correct with either ultrasonography or 99m Tc-MIBI scintigraphy in the majority of cases. MIP with iPTH monitoring are highly successful in this group of patients and this operative technique should be the method of choice
Genome-Wide Detection of Allele Specific Copy Number Variation Associated with Insulin Resistance in African Americans from the HyperGEN Study
African Americans have been understudied in genome wide association studies of diabetes and related traits. In the current study, we examined the joint association of single nucleotide polymorphisms (SNPs) and copy number variants (CNVs) with fasting insulin and an index of insulin resistance (HOMA-IR) in the HyperGEN study, a family based study with proband ascertainment for hypertension. This analysis is restricted to 1,040 African Americans without diabetes. We generated allele specific CNV genotypes at 872,243 autosomal loci using Birdsuite, a freely available multi-stage program. Joint tests of association for SNPs and CNVs were performed using linear mixed models adjusting for covariates and familial relationships. Our results highlight SNPs associated with fasting insulin and HOMA-IR (rs6576507 and rs8026527, 3.7*10−7≤P≤1.1*10−5) near ATPase, class V, type 10A (ATP10A), and the L Type voltage dependent calcium channel (CACNA1D, rs1401492, P≤5.2*10−6). ATP10A belongs to a family of aminophospholipid-transporting ATPases and has been associated with type 2 diabetes in mice. CACNA1D has been linked to pancreatic beta cell generation in mice. The two most significant copy variable markers (rs10277702 and rs361367; P<2.0*10−4) were in the beta variable region of the T-cell receptor gene (TCRVB). Human and mouse TCR has been shown to mimic insulin and its receptor and could contribute to insulin resistance. Our findings differ from genome wide association studies of fasting insulin and other diabetes related traits in European populations, highlighting the continued need to investigate unique genetic influences for understudied populations such as African Americans
Impact of Intraoperative Parathyroid Hormone Monitoring on the Prediction of Multiglandular Parathyroid Disease
Optimal interpretation of the results of intraoperative parathyroid hormone (IOPTH) monitoring during neck exploration for primary hyperparathyroidism (pHPT) is still controversial. The reliability of the “50% rule” in multiglandular disease (MGD) is often disputed, mostly because of competing pathophysiologic paradigms. The aim of this study was to ascertain and corroborate the ability of IOPTH monitoring to detect MGD in a practice, combining conventional and alternative parathyroidectomy techniques. This is a retrospective single institution analysis of 69 consecutive patients undergoing cervical exploration for pHPT by various approaches. The IOPTH measurements were performed after induction of anesthesia but prior to skin incision and 10 minutes after excision of the first visualized enlarged parathyroid gland. In this series, 55 patients (80%) had single adenomas, and 14 patients (20%) had MGD. In 8 of the 14 patients with MGD, IOPTH levels were obtained sequentially after removal of every enlarged gland. Of these 8 patients, 6 (75%) had a false-positive decrease (decrease below 50% of baseline value in presence of another enlarged gland) failing to predict the presence of a second enlarged gland. In 2 cases IOPTH monitoring provided a true-negative result, correctly predicting MGD. If MGD is defined by gross morphologic criteria, IOPTH monitoring fails to predict the presence of MGD reliably. However, if MGD is defined by functional criteria, the course of these patients does not seem significantly affected. The importance of these findings must be further investigated, especially with regard to the outcome of minimally invasive parathyroid procedures.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/41301/1/268_2003_Article_7255.pd
CNS activity of Pokeweed Anti-viral Protein (PAP) in mice infected with Lymphocytic Choriomeningitis Virus (LCMV)
BACKGROUND: Others and we have previously described the potent in vivo and in vitro activity of the broad-spectrum antiviral agent PAP (Pokeweed antiviral protein) against a wide range of viruses. The purpose of the present study was to further elucidate the anti-viral spectrum of PAP by examining its effects on the survival of mice challenged with lymphocytic choriomeningitis virus (LCMV). METHODS: We examined the therapeutic effect of PAP in CBA mice inoculated with intracerebral injections of the WE54 strain of LCMV at a 1000 PFU dose level that is lethal to 100% of mice within 7–9 days. Mice were treated either with vehicle or PAP administered intraperitoneally 24 hours prior to, 1 hour prior to and 24 hours, 48 hours 72 hours and 96 hours after virus inoculation. RESULTS: PAP exhibits significant in vivo anti- LCMV activity in mice challenged intracerebrally with an otherwise invariably fatal dose of LCMV. At non-toxic dose levels, PAP significantly prolonged survival in the absence of the majority of disease-associated symptoms. The median survival time of PAP-treated mice was >21 days as opposed to 7 days median survival for the control (p = 0.0069). CONCLUSION: Our results presented herein provide unprecedented experimental evidence that PAP exhibits antiviral activity in the CNS of LCMV-infected mice
Live Cell Monitoring of hiPSC Generation and Differentiation Using Differential Expression of Endogenous microRNAs
Human induced pluripotent stem cells (hiPSCs) provide new possibilities for regenerative therapies. In order for this potential to be achieved, it is critical to efficiently monitor the differentiation of these hiPSCs into specific lineages. Here, we describe a lentiviral reporter vector sensitive to specific microRNAs (miRNA) to show that a single vector bearing multiple miRNA target sequences conjugated to different reporters can be used to monitor hiPSC formation and subsequent differentiation from human fetal fibroblasts (HFFs). The reporter vector encodes EGFP conjugated to the targets of human embryonic stem cell (hESC) specific miRNAs (miR-302a and miR-302d) and mCherry conjugated to the targets of differentiated cells specific miRNAs (miR-142-3p, miR-155, and miR-223). The vector was used to track reprogramming of HFF to iPSC. HFFs co-transduced with this reporter vector and vectors encoding 4 reprogramming factors (OCT4, SOX2, KLF4 and cMYC) were mostly positive for EGFP (67%) at an early stage of hiPSC formation. EGFP expression gradually disappeared and mCherry expression increased indicating less miRNAs specific to differentiated cells and expression of miRNAs specific to hESCs. Upon differentiation of the hiPSC into embryoid bodies, a large fraction of these hiPSCs regained EGFP expression and some of those cells became single positive for EGFP. Further differentiation into neural lineages showed distinct structures demarcated by either EGFP or mCherry expression. These findings demonstrate that a miRNA dependent reporter vector can be a useful tool to monitor living cells during reprogramming of hiPSC and subsequent differentiation to lineage specific cells
A novel emergency department based prevention intervention program for people living with HIV: evaluation of early experiences
<p>Abstract</p> <p>Background</p> <p>HIV prevention is increasingly focused on people living with HIV (PLWH) and the role of healthcare settings in prevention. Emergency Departments (EDs) frequently care for PLWH, but do not typically endorse a prevention mission. We conducted a pilot exploratory evaluation of the first reported ED program to address the prevention needs of PLWH.</p> <p>Methods</p> <p>This retrospective observational cohort evaluation reviewed program records to describe the first six months of participants and programmatic operation. Trained counselors provided a risk assessment and counseling intervention combined with three linkage interventions: i) linkage to health care, ii) linkage to case management, and iii) linkage to partner counseling and referral.</p> <p>Results</p> <p>Of 81 self-identified PLWH who were approached, 55 initially agreed to participate. Of those completing risk assessment, 17/53 (32%, 95 CI 20% to 46%) reported unprotected anal/vaginal intercourse or needle sharing in the past six months with a partner presumed to be HIV negative. Counseling was provided to 52/53 (98%). For those requesting services, 11/15 (73%) were linked to healthcare, 4/23 (17%) were coordinated with case management, and 1/4 (25%) completed partner counseling and referral.</p> <p>Conclusion</p> <p>Given base resources of trained counselors, it was feasible to implement a program to address the prevention needs for persons living with HIV in an urban ED. ED patients with HIV often have unmet needs which might be addressed by improved linkage with existing community resources. Healthcare and prevention barriers for PLWH may be attenuated if EDs were to incorporate CDC recommended prevention measures for healthcare providers.</p
ERK5 MAP Kinase Regulates Neurogenin1 during Cortical Neurogenesis
The commitment of multi-potent cortical progenitors to a neuronal fate depends on the transient induction of the basic-helix-loop-helix (bHLH) family of transcription factors including Neurogenin 1 (Neurog1). Previous studies have focused on mechanisms that control the expression of these proteins while little is known about whether their pro-neural activities can be regulated by kinase signaling pathways. Using primary cultures and ex vivo slice cultures, here we report that both the transcriptional and pro-neural activities of Neurog1 are regulated by extracellular signal-regulated kinase (ERK) 5 signaling in cortical progenitors. Activation of ERK5 potentiated, while blocking ERK5 inhibited Neurog1-induced neurogenesis. Furthermore, endogenous ERK5 activity was required for Neurog1-initiated transcription. Interestingly, ERK5 activation was sufficient to induce Neurog1 phosphorylation and ERK5 directly phosphorylated Neurog1 in vitro. We identified S179/S208 as putative ERK5 phosphorylation sites in Neurog1. Mutations of S179/S208 to alanines inhibited the transcriptional and pro-neural activities of Neurog1. Our data identify ERK5 phosphorylation of Neurog1 as a novel mechanism regulating neuronal fate commitment of cortical progenitors
Quantifying Heterogeneity in Host-Vector Contact: Tsetse (Glossina swynnertoni and G. pallidipes) Host Choice in Serengeti National Park, Tanzania
Identifying hosts of blood-feeding insect vectors is crucial in understanding their role in disease transmission. Rhodesian human African trypanosomiasis (r-HAT or ‘sleeping sickness’) caused by Trypanosoma brucei rhodesiense and transmitted by tsetse flies, is commonly associated with wilderness areas of east and southern Africa. Such areas hold a diverse range of species which form communities of hosts for disease maintenance. The relative importance of different wildlife hosts remains unclear. This study quantified tsetse feeding preferences in a wilderness area of great host species richness, Serengeti National Park, Tanzania, assessing tsetse feeding and host density contemporaneously.
Glossina swynnertoni and G.pallidipes were collected from six study sites. Bloodmeal sources were identified through matching Cytochrome B sequences amplified from bloodmeals from fed flies to published sequences. Densities of large mammal species in each site were quantified, and feeding indices calculated to assess the relative selection or avoidance of each host species by tsetse.
The host species most commonly identified in G. swynnertoni bloodmeals, warthog (94/220), buffalo (48/220) and giraffe (46/220), were found at relatively low densities (3-11/km2) and fed on up to 15 times more frequently than expected by their relative density. Wildebeest, zebra, impala and Thomson’s gazelle, found at the highest densities, were never identified in bloodmeals. Commonly identified hosts for G. pallidipes were buffalo (26/46), giraffe (9/46) and elephant (5/46).
This study is the first to quantify tsetse host range by molecular analysis of tsetse diet with simultaneous assessment of host density in a wilderness area. Although G.swynnertoni and G.pallidipes can feed on a range of species, they are highly selective. Many host species are rarely fed on, despite being present in areas where tsetse are abundant. These feeding patterns, along with the ability of key host species to maintain and transmit T.b.rhodesiense, drive the epidemiology of r-HAT in wilderness areas
- …
