2,333 research outputs found
Characterization of volatile organic compounds at a roadside environment in Hong Kong: An investigation of influences after air pollution control strategies
Vehicular emission is one of the important anthropogenic pollution sources for volatile organic compounds (VOCs). Four characterization campaigns were conducted at a representative urban roadside environment in Hong Kong between May 2011 and February 2012. Carbon monoxide (CO) and VOCs including methane (CH4), non-methane hydrocarbons (NMHCs), halocarbons, and alkyl nitrates were quantified. Both mixing ratios and compositions of the target VOCs show ignorable seasonal variations. Except CO, liquefied petroleum gas (LPG) tracers of propane, i-butane and n-butane are the three most abundant VOCs, which increased significantly as compared with the data measured at the same location in 2003. Meanwhile, the mixing ratios of diesel- and gasoline tracers such as ethyne, alkenes, aromatics, halogenated, and nitrated hydrocarbons decreased by at least of 37%. The application of advanced multivariate receptor modeling technique of positive matrix factorization (PMF) evidenced that the LPG fuel consumption is the largest pollution source, accounting for 60 ± 5% of the total quantified VOCs at the roadside location. The sum of ozone formation potential (OFP) for the target VOCs was 300.9 μg-O3 m-3, which was 47% lower than the value of 567.3 μg-O3 m-3 measured in 2003. The utilization of LPG as fuel in public transport (i.e., taxis and mini-buses) contributed 51% of the sum of OFP, significantly higher than the contributions from gasoline- (16%) and diesel-fueled (12%) engine emissions. Our results demonstrated the effectiveness of the switch from diesel to LPG-fueled engine for taxis and mini-buses implemented by the Hong Kong Special Administrative Region (HKSAR) Government between the recent ten years, in additional to the execution of substitution to LPG-fueled engine and restrictions of the vehicular emissions in compliance with the updated European emission standards
The Zn-vacancy Related Green Luminescence and Donor–acceptor Pair Emission in ZnO Grown By Pulsed Laser Deposition
postprin
Post-growth annealing induced change of conductivity in As-doped ZnO grown by radio frequency magnetron sputtering
Arsenic-doped ZnO films were fabricated by radio frequency magnetron sputtering method at a relatively low substrate temperature of 200 C. Post-growth annealing in air was carried out up to a temperature of 1000 C. The samples were characterized by Hall measurement, positron annihilation spectroscopy (PAS), secondary ion mass spectroscopy (SIMS), and cathodoluminescence (CL). The as-grown sample was of n-type and it converted to p-type material after the 400 C annealing. The resulting hole concentration was found to increase with annealing temperature and reached a maximum of 6 10 17cm -3 at the annealing temperature of 600 C. The origin of the p-type conductivity was consistent with the As Zn(V Zn) 2 shallow acceptor model. Further increasing the annealing temperature would decrease the hole concentration of the samples finally converted the sample back to n-type. With evidence, it was suggested that the removal of the p-type conductivity was due to the dissociation of the As Zn(V Zn) 2 acceptor and the creation of the deep level defect giving rise to the green luminescence. © 2011 American Institute of Physics.published_or_final_versio
Improved outcome of acute lymphoblastic leukaemia treated by delayed intensification in Hong Kong children: HKALL 97 study
Objective. To study the outcome of children with acute lymphoblastic leukaemia who were treated using a protocol including one or two delayed intensifications. Design. Prospective single-arm multicentre study. Setting. Five designated children cancer units of the Hospital Authority of Hong Kong. Patients. Children aged between 1 and 17.9 years with newly diagnosed acute lymphoblastic leukaemia seen from November 1997 to December 2002. Intervention. Chemotherapy was modified from a German Berlin-Frankfurt-Muenster 95 (BFM95) protocol that included a delayed intensification similar to the induction phase repeated 5 months after diagnosis. High-risk patients were given double delayed intensification. Main outcome measures. Overall survival and event-free survival of the whole group and the three risk groups (standard-, intermediate-, and high-risk groups), and comparison with historical controls. Results. A total of 171 patients were recruited with a median age at diagnosis of 5.57 years (range, 1.15-17.85 years). The induction remission rate was 95.3% and non-leukaemia mortality during remission was 2.3%. At 4 years, the relapse rate of this (HKALL97) study was significantly lower than that of the HKALL93 study (15.7 vs 37.3%; P<0.001). The 4-year overall survival of HKALL97 and HKALL93 studies were 86.5% and 81.8%, respectively (P=0.51). The 4-year event-free survival for HKALL 97 and HKALL93 studies were 79% and 65%, respectively (P=0.007). Nonetheless the difference of event-free survival was most remarkable in the intermediate-risk group: 75.6% and 53.1% for HKALL97 and HKALL93 studies, respectively (P=0.06). Conclusion. A more intensive delayed consolidation phase improved the outcome for children with acute lymphoblastic leukaemia by reducing relapses at 4 years. The early treatment complications were manageable and non-leukaemia mortality during remission remained low.published_or_final_versio
Atomic structures of TDP-43 LCD segments and insights into reversible or pathogenic aggregation.
The normally soluble TAR DNA-binding protein 43 (TDP-43) is found aggregated both in reversible stress granules and in irreversible pathogenic amyloid. In TDP-43, the low-complexity domain (LCD) is believed to be involved in both types of aggregation. To uncover the structural origins of these two modes of β-sheet-rich aggregation, we have determined ten structures of segments of the LCD of human TDP-43. Six of these segments form steric zippers characteristic of the spines of pathogenic amyloid fibrils; four others form LARKS, the labile amyloid-like interactions characteristic of protein hydrogels and proteins found in membraneless organelles, including stress granules. Supporting a hypothetical pathway from reversible to irreversible amyloid aggregation, we found that familial ALS variants of TDP-43 convert LARKS to irreversible aggregates. Our structures suggest how TDP-43 adopts both reversible and irreversible β-sheet aggregates and the role of mutation in the possible transition of reversible to irreversible pathogenic aggregation
CRISPR-Cas9 screens in human cells and primary neurons identify modifiers of C9ORF72 dipeptide-repeat-protein toxicity.
Hexanucleotide-repeat expansions in the C9ORF72 gene are the most common cause of amyotrophic lateral sclerosis and frontotemporal dementia (c9ALS/FTD). The nucleotide-repeat expansions are translated into dipeptide-repeat (DPR) proteins, which are aggregation prone and may contribute to neurodegeneration. We used the CRISPR-Cas9 system to perform genome-wide gene-knockout screens for suppressors and enhancers of C9ORF72 DPR toxicity in human cells. We validated hits by performing secondary CRISPR-Cas9 screens in primary mouse neurons. We uncovered potent modifiers of DPR toxicity whose gene products function in nucleocytoplasmic transport, the endoplasmic reticulum (ER), proteasome, RNA-processing pathways, and chromatin modification. One modifier, TMX2, modulated the ER-stress signature elicited by C9ORF72 DPRs in neurons and improved survival of human induced motor neurons from patients with C9ORF72 ALS. Together, our results demonstrate the promise of CRISPR-Cas9 screens in defining mechanisms of neurodegenerative diseases
Minimal residual disease-based risk stratification in Chinese childhood acute lymphoblastic leukemia by flow cytometry and plasma DNA quantitative polymerase chain reaction
published_or_final_versio
Structure of hadron resonances with a nearby zero of the amplitude
We discuss the relation between the analytic structure of the scattering
amplitude and the origin of an eigenstate represented by a pole of the
amplitude.If the eigenstate is not dynamically generated by the interaction in
the channel of interest, the residue of the pole vanishes in the zero coupling
limit. Based on the topological nature of the phase of the scattering
amplitude, we show that the pole must encounter with the
Castillejo-Dalitz-Dyson (CDD) zero in this limit. It is concluded that the
dynamical component of the eigenstate is small if a CDD zero exists near the
eigenstate pole. We show that the line shape of the resonance is distorted from
the Breit-Wigner form as an observable consequence of the nearby CDD zero.
Finally, studying the positions of poles and CDD zeros of the KbarN-piSigma
amplitude, we discuss the origin of the eigenstates in the Lambda(1405) region.Comment: 7 pages, 3 figures, v2: published versio
Performance of the CMS Cathode Strip Chambers with Cosmic Rays
The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device
in the CMS endcaps. Their performance has been evaluated using data taken
during a cosmic ray run in fall 2008. Measured noise levels are low, with the
number of noisy channels well below 1%. Coordinate resolution was measured for
all types of chambers, and fall in the range 47 microns to 243 microns. The
efficiencies for local charged track triggers, for hit and for segments
reconstruction were measured, and are above 99%. The timing resolution per
layer is approximately 5 ns
- …
