50 research outputs found
Energy Internet: Cyber-physical Deployment of Future Distribution Grids
Energy Internet is a concept broadly used by researchers and other practitioners indicating the increased use of information and communication technologies (ICTs) in the management of decentralized electric power grids with distributed energy resources. The Energy Internet is conceptually similar to the (Data) Internet (The Economist 2004).
More precisely, the Energy Internet refers to a large-scale cyber-physical system built upon packetized energy management of flexible loads in single or networked microgrids, enabled by the advances in ICTs, especially machine-type communications (Nardelli et al. 2019).Post-print / Final draf
The steady-state transcriptome of the four major life-cycle stages of Trypanosoma cruzi
<p>Abstract</p> <p>Background</p> <p>Chronic chagasic cardiomyopathy is a debilitating and frequently fatal outcome of human infection with the protozoan parasite, <it>Trypanosoma cruzi</it>. Microarray analysis of gene expression during the <it>T. cruzi </it>life-cycle could be a valuable means of identifying drug and vaccine targets based on their appropriate expression patterns, but results from previous microarray studies in <it>T. cruzi </it>and related kinetoplastid parasites have suggested that the transcript abundances of most genes in these organisms do not vary significantly between life-cycle stages.</p> <p>Results</p> <p>In this study, we used whole genome, oligonucleotide microarrays to globally determine the extent to which <it>T. cruzi </it>regulates mRNA relative abundances over the course of its complete life-cycle. In contrast to previous microarray studies in kinetoplastids, we observed that relative transcript abundances for over 50% of the genes detected on the <it>T. cruzi </it>microarrays were significantly regulated during the <it>T. cruzi </it>life-cycle. The significant regulation of 25 of these genes was confirmed by quantitative reverse-transcriptase PCR (qRT-PCR). The <it>T. cruzi </it>transcriptome also mirrored published protein expression data for several functional groups. Among the differentially regulated genes were members of paralog clusters, nearly 10% of which showed divergent expression patterns between cluster members.</p> <p>Conclusion</p> <p>Taken together, these data support the conclusion that transcript abundance is an important level of gene expression regulation in <it>T. cruzi</it>. Thus, microarray analysis is a valuable screening tool for identifying stage-regulated <it>T. cruzi </it>genes and metabolic pathways.</p
Coordinated spatial and temporal expression of Hox genes during embryogenesis in the acoel Convolutriloba longifissura
Background: Hox genes are critical for patterning the bilaterian anterior-posterior axis. The evolution of their clustered genomic arrangement and ancestral function has been debated since their discovery. As acoels appear to represent the sister group to the remaining Bilateria (Nephrozoa), investigating Hox gene expression will provide an insight into the ancestral features of the Hox genes in metazoan evolution. Results: We describe the expression of anterior, central and posterior class Hox genes and the ParaHox ortholog Cdx in the acoel Convolutriloba longifissura. Expression of all three Hox genes begins contemporaneously after gastrulation and then resolves into staggered domains along the anterior-posterior axis, suggesting that the spatial coordination of Hox gene expression was present in the bilaterian ancestor. After early surface ectodermal expression, the anterior and central class genes are expressed in small domains of putative neural precursor cells co-expressing ClSoxB1, suggesting an evolutionary early function of Hox genes in patterning parts of the nervous system. In contrast, the expression of the posterior Hox gene is found in all three germ layers in a much broader posterior region of the embryo. Conclusion: Our results suggest that the ancestral set of Hox genes was involved in the anteriorposterior patterning of the nervous system of the last common bilaterian ancestor and were later co-opted for patterning in diverse tissues in the bilaterian radiation. The lack of temporal colinearity of Hox expression in acoels may be due to a loss of genomic clustering in this clade or, alternatively, temporal colinearity may have arisen in conjunction with the expansion of the Hox cluster in the Nephrozoa
