73 research outputs found
Nonlinear homogenisation of trabecular bone: effect of solid phase constitutive model
Micro-finite element models have been extensively employed to evaluate the elastic properties of trabecular bone and, to a limited extent, its yield behaviour. The macroscopic stiffness tensor and yield surface are of special interest since they are essential in the prediction of bone strength and stability of implants at the whole bone level. While macroscopic elastic properties are now well understood, yield and post-yield properties are not. The aim of this study is to shed some light on what the effect of the solid phase yield criterion is on the macroscopic yield of trabecular bone for samples with different microstructure. Three samples with very different density were subjected to a large set of apparent load cases (which is important since physiological loading is complex and can have multiple components in stress or strain space) with two different solid phase yield criteria: Drucker-Prager and eccentric-ellipsoid. The study found that these two criteria led to small differences in the macroscopic yield strains for most load cases except for those that were compression-dominated; in these load cases, the yield strains for the Drucker-Prager criterion were significantly higher. Higher density samples resulted in higher differences between the two criteria. This work provides a comprehensive assessment of the effect of two different solid phase yield criteria on the macroscopic yield strains of trabecular bone, for a wide range of load cases, and for samples with different morphology.</p
Characterisation of time-dependent mechanical behaviour of trabecular bone and its constituents
Trabecular bone is a porous composite material which consists of a mineral
phase (mainly hydroxyapatite), organic phase (mostly type I collagen) and water
assembled into a complex, hierarchical structure. In biomechanical modelling,
its mechanical response to loads is generally assumed to be instantaneous,
i.e. it is treated as a time-independent material. It is, however, recognised
that the response of trabecular bone to loads is time-dependent. Study
of this time-dependent behaviour is important in several contexts such as: to
understand energy dissipation ability of bone; to understand the age-related
non-traumatic fractures; to predict implant loosening due to cyclic loading; to
understand progressive vertebral deformity; and for pre-clinical evaluation of
total joint replacement.
To investigate time-dependent behaviour, bovine trabecular bone samples
were subjected to compressive loading, creep, unloading and recovery at multiple
load levels (corresponding to apparent strain of 2,000-25,000 με). The
results show that: the time-dependent behaviour of trabecular bone comprises
of both recoverable and irrecoverable strains; the strain response is nonlinearly
related to applied load levels; and the response is associated with bone volume
fraction. It was found that bone with low porosity demonstrates elastic
stiffening followed by elastic softening, while elastic softening is demonstrated
by porous bone at relatively low loads. Linear, nonlinear viscoelastic and nonlinear
viscoelastic-viscoplastic constitutive models were developed to predict
trabecular bone’s time-dependent behaviour. Nonlinear viscoelastic constitutive model was found to predict the recovery behaviour well, while nonlinear
viscoelastic-viscoplastic model predicts the full creep-recovery behaviour reasonably
well. Depending on the requirements all these models can be used to
incorporate time-dependent behaviour in finite element models.
To evaluate the contribution of the key constituents of trabecular bone and
its microstructure, tests were conducted on demineralised and deproteinised
samples. Reversed cyclic loading experiments (tension to compression) were
conducted on demineralised trabecular bone samples. It was found that demineralised
bone exhibits asymmetric mechanical response - elastic stiffening
in tension and softening in compression. This tension to compression transition
was found to be smooth. Tensile multiple-load-creep-unload-recovery experiments
on demineralised trabecular samples show irrecoverable strain (or
residual strain) even at the low stress levels. Demineralised trabecular bone
samples demonstrate elastic stiffening with increasing load levels in tension,
and their time-dependent behaviour is nonlinear with respect to applied loads .
Nonlinear viscoelastic constitutive model was developed which can predict its
recovery behaviour well. Experiments on deproteinised samples showed that
their modulus and strength are reasonably well related to bone volume fraction.
The study considers an application of time-dependent behaviour of trabecular
bone. Time-dependent properties are assigned to trabecular bone in a
bone-screw system, in which the screw is subjected to cyclic loading. It is
found that separation between bone and the screw at the interface can increase
with increasing number of cycles which can accentuate loosening. The
relative larger deformation occurs when this system to be loaded at the higher
loading frequency. The deformation at the bone-screw interface is related to
trabecular bone’s bone volume fraction; screws in a more porous bone are at
a higher risk of loosening
Icariin and its Derivative Icariside II Extend Healthspan via Insulin/IGF-1 Pathway in C. elegans
Compounds that delay aging might also postpone age-related diseases and extend healthspan in humans. Icariin is a flavonol extracted from several plant species of the Epimedium family. The icariin and its metabolic derivatives have been shown to exert wide protective effects in age-related diseases. However, whether icariin and its derivatives have the potency of delaying aging remains unclear. Here, we report that icariin and its derivative icariside II extend C. elegans lifespan. Using HPLC, we found high level of icariside II in the animals treated with icariin, suggesting icariside II is the bioactive form in vivo of icariin. Icariside II also increased the thermo and oxidative stress tolerance, slowed locomotion decline in late adulthood and delayed the onset of paralysis mediated by polyQ and Aβ1–42 proteotoxicity. The lifespan extension effect of icariside II is dependent on the insulin/IGF-1 signaling (IIS) since the daf-16(mu86) and daf-2(e1370) failed to show any lifespan extension upon icariside II treatment. Consistently, icariside II treatment upregulates the expression of DAF-16 targets in the wild-type. Moreover, our data suggests that the heat shock transcription factor HSF-1 has a role in icariside II-dependent lifespan extension further implicating the IIS pathway. In conclusion, we demonstrate a novel natural compound, icariside II as the bioactive form of icariin, extends the healthspan via IIS pathway in C. elegans
Early Events Associated with Infection of Epstein-Barr Virus Infection of Primary B-Cells
Epstein Barr virus (EBV) is closely associated with the development of a vast number of human cancers. To develop a system for monitoring early cellular and viral events associated with EBV infection a self-recombining BAC containing 172-kb of the Epstein Barr virus genome BAC-EBV designated as MD1 BAC (Chen et al., 2005, J.Virology) was used to introduce an expression cassette of green fluorescent protein (GFP) by homologous recombination, and the resultant BAC clone, BAC-GFP-EBV was transfected into the HEK 293T epithelial cell line. The resulting recombinant GFP EBV was induced to produce progeny virus by chemical inducer from the stable HEK 293T BAC GFP EBV cell line and the virus was used to immortalize human primary B-cell as monitored by green fluorescence and outgrowth of the primary B cells. The infection, B-cell activation and cell proliferation due to GFP EBV was monitored by the expression of the B-cell surface antigens CD5, CD10, CD19, CD23, CD39, CD40 , CD44 and the intercellular proliferation marker Ki-67 using Flow cytometry. The results show a dramatic increase in Ki-67 which continues to increase by 6–7 days post-infection. Likewise, CD40 signals showed a gradual increase, whereas CD23 signals were increased by 6–12 hours, maximally by 3 days and then decreased. Monitoring the viral gene expression pattern showed an early burst of lytic gene expression. This up-regulation of lytic gene expression prior to latent genes during early infection strongly suggests that EBV infects primary B-cell with an initial burst of lytic gene expression and the resulting progeny virus is competent for infecting new primary B-cells. This process may be critical for establishment of latency prior to cellular transformation. The newly infected primary B-cells can be further analyzed for investigating B cell activation due to EBV infection
Finite Element Analysis of Bone and Experimental Validation
This chapter describes the application of the finite element (FE) method to bone tissues. The aspects that differ the most between bone and other materials’ FE analysis are the type of elements used, constitutive models, and experimental validation. These aspects are looked at from a historical evolution stand point.
Several types of elements can be used to simulate similar bone structures and within the same analysis many types of elements may be needed to realistically simulate an anatomical part.
Special attention is made to constitutive models, including the use of density-elasticity relationships made possible through CT-scanned images. Other more complex models are also described that include viscoelasticity and anisotropy.
The importance of experimental validation is discussed, describing several methods used by different authors in this challenging field. The use of cadaveric human bones is not always possible or desirable and other options are described, as the use of animal or artificial bones. Strain and strain rate measuring methods are also discussed, such as rosette strain gauges and optical devices.publishe
Nonlinear viscoelastic characterization of bovine trabecular bone
The time-independent elastic properties of trabecular bone have been extensively investigated, and several stiffness–density relations have been proposed. Although it is recognized that trabecular bone exhibits time-dependent mechanical behaviour, a property of viscoelastic materials, the characterization of this behaviour has received limited attention. The objective of the present study was to investigate the time-dependent behaviour of bovine trabecular bone through a series of compressive creep–recovery experiments and to identify its nonlinear constitutive viscoelastic material parameters. Uniaxial compressive creep and recovery experiments at multiple loads were performed on cylindrical bovine trabecular bone samples ([Formula: see text] ). Creep response was found to be significant and always comprised of recoverable and irrecoverable strains, even at low stress/strain levels. This response was also found to vary nonlinearly with applied stress. A systematic methodology was developed to separate recoverable (nonlinear viscoelastic) and irrecoverable (permanent) strains from the total experimental strain response. We found that Schapery’s nonlinear viscoelastic constitutive model describes the viscoelastic response of the trabecular bone, and parameters associated with this model were estimated from the multiple load creep–recovery (MLCR) experiments. Nonlinear viscoelastic recovery compliance was found to have a decreasing and then increasing trend with increasing stress level, indicating possible stiffening and softening behaviour of trabecular bone due to creep. The obtained parameters from MLCR tests, expressed as second-order polynomial functions of stress, showed a similar trend for all the samples, and also demonstrate stiffening–softening behaviour with increasing stress
Predicting early brain metastases based on clinicopathological factors and gene expression analysis in advanced HER2-positive breast cancer patients
Relevance of anterior mandibular body ostectomy in mandibular prognathism
PURPOSE: We tried to find out the relevance of anterior mandibular body ostectomy in deformities of the mandible specially prognathism, which is primarily limited to anterior part only. PATIENTS AND METHODS: Ten patients with skeletal deformity along with malocclusion, which was limited to anterior body of mandible were selected. Selected patients had proper molar interdigitation (even if class 3) and in general had anterior crossbite (except one). All patients had crossed their growth spurts and had no hormonal influence on facial deformity. Specific protocol, including cephelometric analysis cephalometry for orthognathic surgery, prediction tracing and model surgeries were devised. Pre and post-surgical orthodontics and body ostectomy were performed in all patients along with 18-month post-op follow-up. RESULTS: There was significant reduction in prognathism and horizontal dysplasia in all ten patients. Anterior crossbite as well as axis of incisiors over mandibular plane was corrected in all patients due to decrease in length of mandibular body. All patients showed decreased facial height and better lip competence with intact posterior occlusion and no (negligible or transient) sensory loss. CONCLUSIONS: Our study could confirm that people whose deformity is limited to the anterior part of mandible with reasonable occlusion posteriorly can get satisfactory cosmetic and functional results through body ostectomy alone rather than going for surgical procedure in the ramal area, which is liable to cause sensory and occlusal disturbances
Not Available
Worked as a team memberClostridium perfringens is one of the most important globally recognised gastroenteric pathogen in
humans as well as animals. The present study was aimed to know the similarities/divergence among
C. perfringens type A isolates of human and animal origin using the pulsed-field gel electrophoresis
(PFGE) as a molecular tool. The enterotoxic isolates obtained by screening of human diarrhoeal cases
(n = 130), diarrhoeal cases of pig (n = 52) and goat (n = 50), meat samples viz., pork (n = 59) and chevon
(n = 57) were characterized by standard cultural and biochemical methods followed by PCR Assays.
Accordingly, a total of 11 C. perfringens type A characterized isolates (16S rRNA+
, cpa+
, cpb2
+ and cpe+
)
recovered from human diarrhoeal cases (n = 3); diarrhoeal cases of pig (n = 2) and goat (n = 2); meat samples viz. pork (n = 2) and chevon (n = 2) were examined employing PFGE. The observed clustering pattern
in PFGE analysis showed the relatedness between isolates from diarrhoeal goat and chevon (90–100%);
diarrhoeal pig and pork (65–68%); moreover, isolates from human diarrhoeal cases were exhibiting lineage to cases from goat and pig diarrhoea as well pork and chevon by 62–68% relatedness. The outcome
of the present study indicates the probable contamination of this pathogen to the human food chain
through faeces from suspected food animals viz. goat and pig and their improperly cooked meat.
2017 Faculty of Veterinary Medicine, Cairo University. Production and hosting by Elsevier B.V. This is an
open access article under the CC BY-NC-ND licenseNot Availabl
- …
