239 research outputs found

    Catalyst: Reimagining sustainability with and through fine art

    Get PDF
    © 2016 by the author(s). How might we begin to explore the concept of the “sustainable city” in a world often characterized as dynamic, fluid, and contested? Debates about the sustainable city are too often dominated by a technological discourse conducted among professional experts, but this technocratic framing is open to challenge. For some critics, sustainability is a meaningless notion, yet for others its semantic pliability opens up discursive spaces through which to explore interconnections across time, space, and scale. Thus, while enacting sustainability in policy and practice is an arduous task, we can productively ask how cultural imaginations might be stirred and shaken to make sustainability accessible to a wider public who might join the conversation. What role, we ask, can and should the arts play in wider debates about sustainability in the city today? We explore a coproduced artwork in the northeast of England in order to explain how practice-led research methods were put into dialogue with the social sciences to activate new perspectives on the politics, aesthetics, and practices of sustainability. The case is presented to argue that creative material experimentations can be used as an active research inquiry through which ideas can be tested without knowing predefined means or ends. The case shows how such creativity acts as a catalyst to engage a heterogeneous mix of actors in the redefinition of urban spaces, juxtaposing past and present, with the ephemeral and the (seemingly) durable

    The effects of knee joint angle on neuromuscular activity during electrostimulation in healthy older adults

    Get PDF
    Introduction Electrostimulation devices stimulate the common peroneal nerve, producing a calf muscle-pump action to promote venous circulation. Whether knee joint angle influences calf neuromuscular activity remains unclear. Our aim was to determine the effects of knee joint angle on lower limb neuromuscular activity during electrostimulation. Methods Fifteen healthy, older adults underwent 60 min of electrostimulation, with the knee joint at three different angles (0°, 45° or 90° flexion; random order; 20 min each). Outcome variables included electromyography of the peroneus longus, tibialis anterior and gastrocnemius medialis and lateralis and discomfort. Results Knee angle did not influence tibialis anterior and peroneus longus neuromuscular activity during electrostimulation. Neuromuscular activity was greater in the gastrocnemius medialis (p = 0.002) and lateralis (p = 0.002) at 90°, than 0° knee angle. Electrostimulation intensity was positively related to neuromuscular activity for each muscle, with a knee angle effect for the gastrocnemius medialis (p = 0.05). Conclusion Results suggest that during electrostimulation, knee joint angle influenced gastrocnemii neuromuscular activity; increased gastrocnemius medialis activity across all intensities (at 90°), when compared to 0° and 45° flexion; and did not influence peroneus longus and tibialis anterior activity. Greater electrostimulation-evoked gastrocnemii activity has implications for producing a more forceful calf muscle-pump action, potentially further improving venous flow

    Pilot study evaluating a brief mindfulness intervention for those with chronic pain: study protocol for a randomized controlled trial.

    Get PDF
    BACKGROUND: The burden of chronic pain is a major challenge, impacting the quality of life of patients. Intensive programmes of mindfulness-based therapy can help patients to cope with chronic pain but can be time consuming and require a trained specialist to implement. The self-management model of care is now integral to the care of patients with chronic pain; home-based interventions can be very acceptable, making a compelling argument for investigating brief, self-management interventions. The aim of this study is two-fold: to assess the immediate effects of a brief self-help mindfulness intervention for coping with chronic pain and to assess the feasibility of conducting a definitive randomized controlled trial to determine the effectiveness of such an intervention. METHODS/DESIGN: A randomized controlled pilot study will be conducted to evaluate a brief mindfulness intervention for those with chronic pain. Ninety chronic pain patients who attend hospital outpatient clinics will be recruited and allocated randomly to either the control or treatment group on a 1:1 basis using the computer-generated list of random numbers. The treatment group receives mindfulness audios and the control group receives audios of readings from a non-fiction book, all of which are 15 minutes in length. Immediate effects of the intervention are assessed with brief psychological measures immediately before and after audio use. Mindfulness, mood, health-related quality of life, pain catastrophizing and experience of the intervention are assessed with standardized measures, brief ratings and brief telephone follow-ups, at baseline and after one week and one month. Feasibility is assessed by estimation of effect sizes for outcomes, patient adherence and experience, and appraisal of resource allocation in provision of the intervention. DISCUSSION: This trial will assess whether a brief mindfulness-based intervention is effective for immediately reducing perceived distress and pain with the side effect of increasing relaxation in chronic pain patients and will determine the feasibility of conducting a definitive randomized controlled trial. Patient recruitment began in January 2015 and is due to be completed in June 2016. TRIAL REGISTRATION: ISRCTN61538090 Registered 20 April 2015

    Modulation of 11β-hydroxysteroid dehydrogenase as a strategy to reduce vascular inflammation

    Get PDF
    Atherosclerosis is a chronic inflammatory disease in which initial vascular damage leads to extensive macrophage and lymphocyte infiltration. Although acutely glucocorticoids suppress inflammation, chronic glucocorticoid excess worsens atherosclerosis, possibly by exacerbating systemic cardiovascular risk factors. However, glucocorticoid action within the lesion may reduce neointimal proliferation and inflammation. Glucocorticoid levels within cells do not necessarily reflect circulating levels due to pre-receptor metabolism by 11β-hydroxysteroid dehydrogenases (11β-HSDs). 11β-HSD2 converts active glucocorticoids into inert 11-keto forms. 11β-HSD1 catalyses the reverse reaction, regenerating active glucocorticoids. 11β-HSD2-deficiency/ inhibition causes hypertension, whereas deficiency/ inhibition of 11β-HSD1 generates a cardioprotective lipid profile and improves glycemic control. Importantly, 11β-HSD1-deficiency/ inhibition is atheroprotective, whereas 11β-HSD2-deficiency accelerates atherosclerosis. These effects are largely independent of systemic risk factors, reflecting modulation of glucocorticoid action and inflammation within the vasculature. Here, we consider whether evidence linking the 11β-HSDs to vascular inflammation suggests these isozymes are potential therapeutic targets in vascular injury and atherosclerosis

    Learning Adaptive Regularization for Image Labeling Using Geometric Assignment

    Full text link
    We study the inverse problem of model parameter learning for pixelwise image labeling, using the linear assignment flow and training data with ground truth. This is accomplished by a Riemannian gradient flow on the manifold of parameters that determine the regularization properties of the assignment flow. Using the symplectic partitioned Runge--Kutta method for numerical integration, it is shown that deriving the sensitivity conditions of the parameter learning problem and its discretization commute. A convenient property of our approach is that learning is based on exact inference. Carefully designed experiments demonstrate the performance of our approach, the expressiveness of the mathematical model as well as its limitations, from the viewpoint of statistical learning and optimal control

    Combined vertebral fracture assessment and bone mineral density measurement: a new standard in the diagnosis of osteoporosis in academic populations

    Get PDF
    Vertebral Fracture Analysis enables the detection of vertebral fractures in the same session as bone mineral density testing. Using this method in 2,424 patients, we found unknown vertebral fractures in approximately one out of each six patients with significant impact on management. The presence of osteoporotic vertebral fractures (VF) is an important risk factor for all future fractures independent of BMD. Yet, determination of the VF status has not become standard practice. Vertebral Fracture Assessment (VFA) is a new feature available on modern densitometers. In this study we aimed to determine the prevalence of VF using VFA in all patients referred for BMD testing in a university medical center and to evaluate its added clinical value. Prospective diagnostic evaluation study in 2,500 consecutive patients referred for BMD. Patients underwent VFA in supine position after BMD testing. Questionnaires were used to assess perceived added value of VFA. In 2,424 patients (1,573 women), results were evaluable. In 541 patients (22%), VFA detected a prevalent VF that was unknown in 69%. In women, the prevalence was 20% versus 27% found in men (p <0.0001). The prevalence of VF was 14% in patients with normal BMD (97/678), increased to 21% (229/1,100) in osteopenia and to 26% in those with osteoporosis (215/646) by WHO criteria. After excluding mild fractures VF prevalence was 13% (322/2,424). In 468 of 942 questionnaires (50% response rate), 27% of the referring physicians reported VFA results to impact on patient management. VFA is a patient friendly new tool with a high diagnostic yield, as it detected unknown VF in one out of each six patients, with significant impact on management. We believe these findings justify considering VFA in all new patients referred for osteoporosis assessment in similar populations

    Sonic Hedgehog and Notch Signaling Can Cooperate to Regulate Neurogenic Divisions of Neocortical Progenitors

    Get PDF
    Innate lymphoid cells (ILCs) and innate-like lymphocytes have important roles in immune responses in the context of infection, cancer, and autoimmunity. The factors involved in driving the differentiation and function of these cell types remain to be clearly defined. There are several cellular signaling pathways involved in embryogenesis, which continue to function in adult tissue. In particular, the WNT, NOTCH, and Hedgehog signaling pathways are emerging as regulators of hematopoietic cell development and differentiation. This review discusses the currently known roles of WNT, NOTCH, and Hedgehog signaling in the differentiation and function of ILCs and innate-like lymphocytes

    Probabilistic Interaction Network of Evidence Algorithm and its Application to Complete Labeling of Peak Lists from Protein NMR Spectroscopy

    Get PDF
    The process of assigning a finite set of tags or labels to a collection of observations, subject to side conditions, is notable for its computational complexity. This labeling paradigm is of theoretical and practical relevance to a wide range of biological applications, including the analysis of data from DNA microarrays, metabolomics experiments, and biomolecular nuclear magnetic resonance (NMR) spectroscopy. We present a novel algorithm, called Probabilistic Interaction Network of Evidence (PINE), that achieves robust, unsupervised probabilistic labeling of data. The computational core of PINE uses estimates of evidence derived from empirical distributions of previously observed data, along with consistency measures, to drive a fictitious system M with Hamiltonian H to a quasi-stationary state that produces probabilistic label assignments for relevant subsets of the data. We demonstrate the successful application of PINE to a key task in protein NMR spectroscopy: that of converting peak lists extracted from various NMR experiments into assignments associated with probabilities for their correctness. This application, called PINE-NMR, is available from a freely accessible computer server (http://pine.nmrfam.wisc.edu). The PINE-NMR server accepts as input the sequence of the protein plus user-specified combinations of data corresponding to an extensive list of NMR experiments; it provides as output a probabilistic assignment of NMR signals (chemical shifts) to sequence-specific backbone and aliphatic side chain atoms plus a probabilistic determination of the protein secondary structure. PINE-NMR can accommodate prior information about assignments or stable isotope labeling schemes. As part of the analysis, PINE-NMR identifies, verifies, and rectifies problems related to chemical shift referencing or erroneous input data. PINE-NMR achieves robust and consistent results that have been shown to be effective in subsequent steps of NMR structure determination

    Cortical Surround Interactions and Perceptual Salience via Natural Scene Statistics

    Get PDF
    Spatial context in images induces perceptual phenomena associated with salience and modulates the responses of neurons in primary visual cortex (V1). However, the computational and ecological principles underlying contextual effects are incompletely understood. We introduce a model of natural images that includes grouping and segmentation of neighboring features based on their joint statistics, and we interpret the firing rates of V1 neurons as performing optimal recognition in this model. We show that this leads to a substantial generalization of divisive normalization, a computation that is ubiquitous in many neural areas and systems. A main novelty in our model is that the influence of the context on a target stimulus is determined by their degree of statistical dependence. We optimized the parameters of the model on natural image patches, and then simulated neural and perceptual responses on stimuli used in classical experiments. The model reproduces some rich and complex response patterns observed in V1, such as the contrast dependence, orientation tuning and spatial asymmetry of surround suppression, while also allowing for surround facilitation under conditions of weak stimulation. It also mimics the perceptual salience produced by simple displays, and leads to readily testable predictions. Our results provide a principled account of orientation-based contextual modulation in early vision and its sensitivity to the homogeneity and spatial arrangement of inputs, and lends statistical support to the theory that V1 computes visual salience
    corecore