55 research outputs found

    Clonality and α-a Recombination in the Australian Cryptococcus gattii VGII Population - An Emerging Outbreak in Australia

    Get PDF
    BACKGROUND: Cryptococcus gattii is a basidiomycetous yeast that causes life-threatening disease in humans and animals. Within C. gattii, four molecular types are recognized (VGI to VGIV). The Australian VGII population has been in the spotlight since 2005, when it was suggested as the possible origin for the ongoing outbreak at Vancouver Island (British Columbia, Canada), with same-sex mating being suggested as the driving force behind the emergence of this outbreak, and is nowadays hypothesized as a widespread phenomenon in C. gattii. However, an in-depth characterization of the Australian VGII population is still lacking. The present work aimed to define the genetic variability within the Australian VGII population and determine processes shaping its population structure. METHODOLOGY/PRINCIPAL FINDINGS: A total of 54 clinical, veterinary and environmental VGII isolates from different parts of the Australian continent were studied. To place the Australian population in a global context, 17 isolates from North America, Europe, Asia and South America were included. Genetic variability was assessed using the newly adopted international consensus multi-locus sequence typing (MLST) scheme, including seven genetic loci: CAP59, GPD1, LAC1, PLB1, SOD1, URA5 and IGS1. Despite the overall clonality observed, the presence of MATa VGII isolates in Australia was demonstrated for the first time in association with recombination in MATα-MATa populations. Our results also support the hypothesis of a "smouldering" outbreak throughout the Australian continent, involving a limited number of VGII genotypes, which is possibly caused by a founder effect followed by a clonal expansion. CONCLUSIONS/SIGNIFICANCE: The detection of sexual recombination in MATα-MATa population in Australia is in accordance with the natural life cycle of C. gattii involving opposite mating types and presents an alternative to the same-sex mating strategy suggested elsewhere. The potential for an Australian wide outbreak highlights the crucial issue to develop active surveillance procedures.Fabian Carriconde, Félix Gilgado, Ian Arthur, David Ellis, Richard Malik, Nathalie van de Wiele, Vincent Robert, Bart J. Currie, Wieland Meye

    Optimisation of biomass, exopolysaccharide and intracellular polysaccharide production from the mycelium of an identified Ganoderma lucidum strain QRS 5120 using response surface methodology

    Get PDF
    Wild-cultivated medicinal mushroom Ganoderma lucidum was morphologically identified and sequenced using phylogenetic software. In submerged-liquid fermentation (SLF), biomass, exopolysaccharide (EPS) and intracellular polysaccharide (IPS) production of the identified G. lucidum was optimised based on initial pH, starting glucose concentration and agitation rate parameters using response surface methodology (RSM). Molecularly, the G. lucidum strain QRS 5120 generated 637 base pairs, which was commensurate with related Ganoderma species. In RSM, by applying central composite design (CCD), a polynomial model was fitted to the experimental data and was found to be significant in all parameters investigated. The strongest effect (p lt 0.0001) was observed for initial pH for biomass, EPS and IPS production, while agitation showed a significant value (p lt 0.005) for biomass. By applying the optimized conditions, the model was validated and generated 5.12 g/L of biomass (initial pH 4.01, 32.09 g/L of glucose and 102 rpm), 2.49 g/L EPS (initial pH 4, 24.25 g/L of glucose and 110 rpm) and 1.52 g/L of IPS (and initial pH 4, 40.43 g/L of glucose, 103 rpm) in 500 mL shake flask fermentation. The optimized parameters can be upscaled for efficient biomass, EPS and IPS production using G. lucidum

    Different Pathways Mediate Amphotericin-Lactoferrin Drug Synergy in Cryptococcus and Saccharomyces

    No full text
    Fungal infections are an increasing cause of morbidity and mortality. Current antifungal drugs are limited in spectrum, few new drugs are in development, and resistance is an increasing issue. Drug synergy can enhance available drugs and extend their lifetime, however, few synergistic combinations are in clinical use and mechanistic data on how combinations work is lacking. The multifunctional glycoprotein lactoferrin (LF) acts synergistically with amphotericin B (AMB) in a range of fungal species. Whole LF binds and sequesters iron, and LF can also be digested enzymatically to produce cationic peptides with distinct antimicrobial functions. To understand how LF synergizes AMB, we previously undertook a transcriptomic analysis in Saccharomyces and found a paradoxical down-regulation of iron and stress response, suggesting stress pathway interference was dysregulating an appropriate response, resulting in cell death. To extend this to a fungal pathogen, we here perform the same analysis in Cryptococcus neoformans. While both fungi responded to AMB in a similar way, the addition of LF produced remarkably contrasting results, with the Cryptococcus transcriptome enriched for processes relating to cellular stress, up-regulation of endoplasmic-reticulum-associated protein degradation (ERAD), stress granule disassembly and protein folding, endoplasmic reticulum-Golgi-vacuole trafficking and autophagy, suggesting an overall disruption of protein and lipid biosynthesis. These studies demonstrate that the mechanism of LF-mediated synergy is species-specific, possibly due to differences in the way LF peptides are generated, bind to and enter cells and act on intracellular targets, illustrating how very different cellular processes can underlie what appears to be a similar phenotypic response

    Candidemia following solid organ transplantation in the era of antifungal prophylaxis: the Australian experience

    No full text
    Solid organ transplant (SOT) recipients have high rates of invasive fungal infections, with Candida species the most commonly isolated fungi. The aim of this study was to identify differences between incidence rates, risk factors, clinical presentations, and outcomes of candidemia in SOT recipients and non-SOT patients. Data from the multicenter prospective Australian Candidaemia Study were examined. From August 2001 to July 2004, 24 episodes (2.2%; 24/1068) of candidemia were identified in SOT recipients. During this period, the numbers of transplanted organs included liver (n=455), kidney (n=1605), single lung (n=57), bilateral lung (n=183), heart and lung (n=18), heart (n=157), and pancreas (n=62). The overall annual estimated incidence of candidemia in SOT recipients was higher (3 per 1000 transplant admissions) than in non-SOT patients (incidence 0.21 per 1000 admissions; P6 months after renal transplantation. Risk factors for candidemia in the month preceding diagnosis were similar to non-SOT recipients except for corticosteroid therapy (P<0.001). Antifungal prophylaxis did not select for more resistant or non-albicans Candida species in the SOT group. The 30-day all-cause mortality was similar to non-SOT patients with candidemia and remains high at 21%. All deaths in SOT recipients occurred early (within 5 days of diagnosis), underlining a need for better diagnostic tests, targeted prevention, and early treatment strategies

    Epstein-Barr virus related post-transplant lymphoproliferative disorder prevention strategies in allogeneic hematopoietic stem cell transplantation

    Get PDF
    Epstein-Barr virus associated post-transplant lymphoproliferative disorders (EBV PTLD) are recognized as a significant cause of morbidity and mortality in patients undergoing allogeneic hematopoietic stem cell transplantation (alloHSCT). The number of patients at risk of developing EBV PTLD is increasing, partly as a result of highly immunosuppressive regimens, including the use of anti-thymocyte globulin (ATG). Importantly, there is heterogeneity in PTLD management strategies between alloHSCT centers worldwide. This review summarizes the different EBV PTLD prevention strategies being utilized including the alloHSCT and T-cell depletion regimes and the risk they confer; monitoring programs, including the timing and analytes used for EBV virus detection, as well as pre-emptive thresholds and therapy with rituximab. In the absence of an institution-specific policy, it is suggested that the optimal pre-emptive strategy in HSCT recipients with T-cell depleting treatments, acute graft vs host disease (GVHD) and a mismatched donor for PTLD prevention is (a) monitoring of EBV DNA post-transplant weekly using plasma or WB as analyte and (b) pre-emptively reducing immune suppression (if possible) at an EBV DNA threshold of >1000 copies/mL (plasma or WB), and treating with rituximab at a threshold of >1000 copies/mL (plasma) or >5000 copies/mL (WB). There is emerging evidence for prophylactic rituximab as a feasible and safe strategy for PTLD, particularly if pre-emptive monitoring is problematic. Future management strategies such as prophylactic EBV specific CTLs have shown promising results and as this procedure becomes less expensive and more accessible, it may become the strategy of choice for EBV PTLD prevention
    corecore