204 research outputs found

    Multi-Model Assessment of the Factors Driving the Ozone Evolution Over the 21st Century

    Get PDF
    The evolution of ozone from 1960 to 2100 is examined in simulations from fourteen chemistry-climate models. There is general agreement among the models at the broadest levels, with all showing column ozone decreasing at all latitudes from 1960 to around 2000, then increasing at all latitudes over the first half of the 21 st century (21 C), and latitudinal variations in the rate of increase and date of return to historical values. In the second half of the century, ozone is projected to carry on increasing, level off or even decrease depending on the latitude, resulting in variable dates of return to historical values at latitudes where column ozone has declined below those levels. Separation into partial column above and below 20 hPa reveals that these latitudinal differences are almost completely due to differences in the lower stratosphere. At all latitudes, upper stratospheric ozone increases throughout the 21 C and returns to 1960 levels before the end of the century, although there is a spread among the models in dates that ozone returns to historical values. Using multiple linear regression the upper stratospheric ozone increase comes from almost equal contributions due to decrease in halogens and cooling from increased greenhouse gas concentrations. The evolution of lower stratospheric ozone differs with latitude. In the tropical lower stratosphere an increase in tropical upwelling causes a steady decrease in ozone through the 21C, and total column ozone does not return to 1960 levels in all models. In contrast, lower stratospheric and total column ozone in middle and high latitudes increases during the 21 C and returns to 1960 levels. For all models there is an earlier return for ozone to historical levels in the northern hemisphere. This is thought to be due to interhemispheric differences in transport

    Evolution of forced shear flows in polytropic atmospheres: A comparison of forcing methods and energetics

    Get PDF
    Shear flows are ubiquitous in astrophysical objects including planetary and stellar interiors, where their dynamics can have significant impact on thermo-chemical processes. Investigating the complex dynamics of shear flows requires numerical calculations that provide a long time evolution of the system. To achieve a sufficiently long lifetime in a local numerical model the system has to be forced externally. However, at present, there exist several different forcing methods to sustain large-scale shear flows in local models. In this paper we examine and compare various methods used in the literature in order to resolve their respective applicability and limitations. These techniques are compared during the exponential growth phase of a shear flow instability, such as the Kelvin-Helmholtz (KH) instability, and some are examined during the subsequent non-linear evolution. A linear stability analysis provides reference for the growth rate of the most unstable modes in the system and a detailed analysis of the energetics provides a comprehensive understanding of the energy exchange during the system's evolution. Finally, we discuss the pros and cons of each forcing method and their relation with natural mechanisms generating shear flows
    corecore