481 research outputs found
Effects of boundary conditions on irreversible dynamics
We present a simple one-dimensional Ising-type spin system on which we define
a completely asymmetric Markovian single spin-flip dynamics. We study the
system at a very low, yet non-zero, temperature and we show that for empty
boundary conditions the Gibbs measure is stationary for such dynamics, while
introducing in a single site a condition the stationary measure changes
drastically, with macroscopical effects. We achieve this result defining an
absolutely convergent series expansion of the stationary measure around the
zero temperature system. Interesting combinatorial identities are involved in
the proofs
Phase transitions for the cavity approach to the clique problem on random graphs
We give a rigorous proof of two phase transitions for a disordered system
designed to find large cliques inside Erdos random graphs. Such a system is
associated with a conservative probabilistic cellular automaton inspired by the
cavity method originally introduced in spin glass theory.Comment: 36 pages, 4 figure
The analyticity region of the hard sphere gas. Improved bounds
We find an improved estimate of the radius of analyticity of the pressure of
the hard-sphere gas in dimensions. The estimates are determined by the
volume of multidimensional regions that can be numerically computed. For ,
for instance, our estimate is about 40% larger than the classical one.Comment: 4 pages, to appear in Journal of Statistical Physic
Un\u2019analisi delle caratteristiche strutturali e delle tendenze delle imprese agroalimentari del Piceno
Metastability and small eigenvalues in Markov chains
In this letter we announce rigorous results that elucidate the relation
between metastable states and low-lying eigenvalues in Markov chains in a much
more general setting and with considerable greater precision as was so far
available. This includes a sharp uncertainty principle relating all low-lying
eigenvalues to mean times of metastable transitions, a relation between the
support of eigenfunctions and the attractor of a metastable state, and sharp
estimates on the convergence of probability distribution of the metastable
transition times to the exponential distribution.Comment: 5pp, AMSTe
Tunneling and Metastability of continuous time Markov chains
We propose a new definition of metastability of Markov processes on countable
state spaces. We obtain sufficient conditions for a sequence of processes to be
metastable. In the reversible case these conditions are expressed in terms of
the capacity and of the stationary measure of the metastable states
A Method to Study Relaxation of Metastable Phases: Macroscopic Mean-Field Dynamics
We propose two different macroscopic dynamics to describe the decay of
metastable phases in many-particle systems with local interactions. These
dynamics depend on the macroscopic order parameter through the restricted
free energy and are designed to give the correct equilibrium
distribution for . The connection between macroscopic dynamics and the
underlying microscopic dynamic are considered in the context of a projection-
operator formalism. Application to the square-lattice nearest-neighbor Ising
ferromagnet gives good agreement with droplet theory and Monte Carlo
simulations of the underlying microscopic dynamic. This includes quantitative
agreement for the exponential dependence of the lifetime on the inverse of the
applied field , and the observation of distinct field regions in which the
derivative of the lifetime with respect to depends differently on . In
addition, at very low temperatures we observe oscillatory behavior of this
derivative with respect to , due to the discreteness of the lattice and in
agreement with rigorous results. Similarities and differences between this work
and earlier works on finite Ising models in the fixed-magnetization ensemble
are discussed.Comment: 44 pages RevTeX3, 11 uuencoded Postscript figs. in separate file
Abrupt Convergence and Escape Behavior for Birth and Death Chains
We link two phenomena concerning the asymptotical behavior of stochastic
processes: (i) abrupt convergence or cut-off phenomenon, and (ii) the escape
behavior usually associated to exit from metastability. The former is
characterized by convergence at asymptotically deterministic times, while the
convergence times for the latter are exponentially distributed. We compare and
study both phenomena for discrete-time birth-and-death chains on Z with drift
towards zero. In particular, this includes energy-driven evolutions with energy
functions in the form of a single well. Under suitable drift hypotheses, we
show that there is both an abrupt convergence towards zero and escape behavior
in the other direction. Furthermore, as the evolutions are reversible, the law
of the final escape trajectory coincides with the time reverse of the law of
cut-off paths. Thus, for evolutions defined by one-dimensional energy wells
with sufficiently steep walls, cut-off and escape behavior are related by time
inversion.Comment: 2 figure
Shaken Dynamics: An Easy Way to Parallel Markov Chain Monte Carlo
We define a class of Markovian parallel dynamics for spin systems on arbitrary graphs with nearest neighbor interaction described by a Hamiltonian function H(sigma). These dynamics turn out to be reversible and their stationary measure is explicitly determined. Convergence to equilibrium and relation of the stationary measure to the usual Gibbs measure are discussed when the dynamics is defined on Z(2). Further it is shown how these dynamics can be used to define natively parallel algorithms to face problems in the context of combinatorial optimization
- …
