1,766 research outputs found
Resonance Effects in the Nonadiabatic Nonlinear Quantum Dimer
The quantum nonlinear dimer consisting of an electron shuttling between the
two sites and in weak interaction with vibrations, is studied numerically under
the application of a DC electric field. A field-induced resonance phenomenon
between the vibrations and the electronic oscillations is found to influence
the electronic transport greatly. For initially delocalization of the electron,
the resonance has the effect of a dramatic increase in the transport. Nonlinear
frequency mixing is identified as the main mechanism that influences transport.
A characterization of the frequency spectrum is also presented.Comment: 7 pages, 6 figure
From M-ary Query to Bit Query: a new strategy for efficient large-scale RFID identification
The tag collision avoidance has been viewed as one of the most important research problems in RFID communications and bit tracking technology has been widely embedded in query tree (QT) based algorithms to tackle such challenge. Existing solutions show further opportunity to greatly improve the reading performance because collision queries and empty queries are not fully explored. In this paper, a bit query (BQ) strategy based Mary query tree protocol (BQMT) is presented, which can not only eliminate idle queries but also separate collided tags into many small subsets and make full use of the collided bits. To further optimize the reading performance, a modified dual prefixes matching (MDPM) mechanism is presented to allow multiple tags to respond in the same slot and thus significantly reduce the number of queries. Theoretical analysis and simulations are supplemented to validate the effectiveness of the proposed BQMT and MDPM, which outperform the existing QT-based algorithms. Also, the BQMT and MDPM can be combined to BQMDPM to improve the reading performance in system efficiency, total identification time, communication complexity and average energy cost
Limits on the gravity wave contribution to microwave anisotropies
We present limits on the fraction of large angle microwave anisotropies which
could come from tensor perturbations. We use the COBE results as well as
smaller scale CMB observations, measurements of galaxy correlations, abundances
of galaxy clusters, and Lyman alpha absorption cloud statistics. Our aim is to
provide conservative limits on the tensor-to-scalar ratio for standard
inflationary models. For power-law inflation, for example, we find T/S<0.52 at
95% confidence, with a similar constraint for phi^p potentials. However, for
models with tensor amplitude unrelated to the scalar spectral index it is still
currently possible to have T/S>1.Comment: 23 pages, 7 figures, accepted for publication in Phys. Rev. D.
Calculations extended to blue spectral index, Fig. 6 added, discussion of
results expande
Self-trapping transition for nonlinear impurities embedded in a Cayley tree
The self-trapping transition due to a single and a dimer nonlinear impurity
embedded in a Cayley tree is studied. In particular, the effect of a perfectly
nonlinear Cayley tree is considered. A sharp self-trapping transition is
observed in each case. It is also observed that the transition is much sharper
compared to the case of one-dimensional lattices. For each system, the critical
values of for the self-trapping transitions are found to obey a
power-law behavior as a function of the connectivity of the Cayley tree.Comment: 6 pages, 7 fig
The Importance of Slow-roll Corrections During Multi-field Inflation
We re-examine the importance of slow-roll corrections during the evolution of
cosmological perturbations in models of multi-field inflation. We find that in
many instances the presence of light degrees of freedom leads to situations in
which next to leading order slow-roll corrections become significant. Examples
where we expect such corrections to be crucial include models in which modes
exit the Hubble radius while the inflationary trajectory undergoes an abrupt
turn in field space, or during a phase transition. We illustrate this with two
examples -- hybrid inflation and double quadratic inflation. Utilizing both
analytic estimates and full numerical results, we find that corrections can be
as large as 20%. Our results have implications for many existing models in the
literature, as these corrections must be included to obtain accurate
observational predictions -- particularly given the level of accuracy expected
from CMB experiments such as PlanckComment: v1: 21 pages, 3 figures, 1 appendix. v2: clarifications to
{\S}{\S}2.1, 3.1 and 4, {\S}5.3 added, references added, results unchanged.
Matches published version in JCA
Size Matters: Origin of Binomial Scaling in Nuclear Fragmentation Experiments
The relationship between measured transverse energy, total charge recovered
in the detector, and size of the emitting system is investigated. Using only
very simple assumptions, we are able to reproduce the observed binomial
emission probabilities and their dependences on the transverse energy.Comment: 14 pages, including 4 figure
Gravitational Lensing at Millimeter Wavelengths
With today's millimeter and submillimeter instruments observers use
gravitational lensing mostly as a tool to boost the sensitivity when observing
distant objects. This is evident through the dominance of gravitationally
lensed objects among those detected in CO rotational lines at z>1. It is also
evident in the use of lensing magnification by galaxy clusters in order to
reach faint submm/mm continuum sources. There are, however, a few cases where
millimeter lines have been directly involved in understanding lensing
configurations. Future mm/submm instruments, such as the ALMA interferometer,
will have both the sensitivity and the angular resolution to allow detailed
observations of gravitational lenses. The almost constant sensitivity to dust
emission over the redshift range z=1-10 means that the likelihood for strong
lensing of dust continuum sources is much higher than for optically selected
sources. A large number of new strong lenses are therefore likely to be
discovered with ALMA, allowing a direct assessment of cosmological parameters
through lens statistics. Combined with an angular resolution <0.1", ALMA will
also be efficient for probing the gravitational potential of galaxy clusters,
where we will be able to study both the sources and the lenses themselves, free
of obscuration and extinction corrections, derive rotation curves for the
lenses, their orientation and, thus, greatly constrain lens models.Comment: 69 pages, Review on quasar lensing. Part of a LNP Topical Volume on
"Dark matter and gravitational lensing", eds. F. Courbin, D. Minniti. To be
published by Springer-Verlag 2002. Paper with full resolution figures can be
found at ftp://oden.oso.chalmers.se/pub/tommy/mmviews.ps.g
Cosmological parameters from SDSS and WMAP
We measure cosmological parameters using the three-dimensional power spectrum
P(k) from over 200,000 galaxies in the Sloan Digital Sky Survey (SDSS) in
combination with WMAP and other data. Our results are consistent with a
``vanilla'' flat adiabatic Lambda-CDM model without tilt (n=1), running tilt,
tensor modes or massive neutrinos. Adding SDSS information more than halves the
WMAP-only error bars on some parameters, tightening 1 sigma constraints on the
Hubble parameter from h~0.74+0.18-0.07 to h~0.70+0.04-0.03, on the matter
density from Omega_m~0.25+/-0.10 to Omega_m~0.30+/-0.04 (1 sigma) and on
neutrino masses from <11 eV to <0.6 eV (95%). SDSS helps even more when
dropping prior assumptions about curvature, neutrinos, tensor modes and the
equation of state. Our results are in substantial agreement with the joint
analysis of WMAP and the 2dF Galaxy Redshift Survey, which is an impressive
consistency check with independent redshift survey data and analysis
techniques. In this paper, we place particular emphasis on clarifying the
physical origin of the constraints, i.e., what we do and do not know when using
different data sets and prior assumptions. For instance, dropping the
assumption that space is perfectly flat, the WMAP-only constraint on the
measured age of the Universe tightens from t0~16.3+2.3-1.8 Gyr to
t0~14.1+1.0-0.9 Gyr by adding SDSS and SN Ia data. Including tensors, running
tilt, neutrino mass and equation of state in the list of free parameters, many
constraints are still quite weak, but future cosmological measurements from
SDSS and other sources should allow these to be substantially tightened.Comment: Minor revisions to match accepted PRD version. SDSS data and ppt
figures available at http://www.hep.upenn.edu/~max/sdsspars.htm
Multiple (inverse) binomial sums of arbitrary weight and depth and the all-order epsilon-expansion of generalized hypergeometric functions with one half-integer value of parameter
We continue the study of the construction of analytical coefficients of the
epsilon-expansion of hypergeometric functions and their connection with Feynman
diagrams. In this paper, we show the following results:
Theorem A: The multiple (inverse) binomial sums of arbitrary weight and depth
(see Eq. (1.1)) are expressible in terms of Remiddi-Vermaseren functions.
Theorem B: The epsilon expansion of a hypergeometric function with one
half-integer value of parameter (see Eq. (1.2)) is expressible in terms of the
harmonic polylogarithms of Remiddi and Vermaseren with coefficients that are
ratios of polynomials. Some extra materials are available via the www at this
http://theor.jinr.ru/~kalmykov/hypergeom/hyper.htmlComment: 24 pages, latex with amsmath and JHEP3.cls; v2: some typos corrected
and a few references added; v3: few references added
Search for R-Parity Violating Decays of Scalar Fermions at LEP
A search for pair-produced scalar fermions under the assumption that R-parity
is not conserved has been performed using data collected with the OPAL detector
at LEP. The data samples analysed correspond to an integrated luminosity of
about 610 pb-1 collected at centre-of-mass energies of sqrt(s) 189-209 GeV. An
important consequence of R-parity violation is that the lightest supersymmetric
particle is expected to be unstable. Searches of R-parity violating decays of
charged sleptons, sneutrinos and squarks have been performed under the
assumptions that the lightest supersymmetric particle decays promptly and that
only one of the R-parity violating couplings is dominant for each of the decay
modes considered. Such processes would yield final states consisting of
leptons, jets, or both with or without missing energy. No significant
single-like excess of events has been observed with respect to the Standard
Model expectations. Limits on the production cross- section of scalar fermions
in R-parity violating scenarios are obtained. Constraints on the supersymmetric
particle masses are also presented in an R-parity violating framework analogous
to the Constrained Minimal Supersymmetric Standard Model.Comment: 51 pages, 24 figures, Submitted to Eur. Phys. J.
- …
