1,182 research outputs found
Validation of water flux and body composition in Glaucous gulls (Larus hyperboreus)
Water influx rates (WIR) measured with tritiated water dilution were compared with direct measures of water and energy intake in glaucous gulls (Larus hyperboreus). Total body water (TBW) measured isotopically was also compared with TBW determined by body composition analysis (BCA) of the same birds. Seventeen wild gulls were captured and studied in outdoor enclosures at Ny-Ålesund, Svalbard, in July 2002. Gulls were hand-fed known quantities of Arctic cod (Boreogadus saida) or given water on the basis of one of four experimental treatments: (A) fasting, (B) fish only, (C) water only, or (D) fish and water. Water and energy content of Arctic cod was also determined. WIR of gulls (after subtracting metabolic water production) in treatments A, B, C, and D were 0, 101 ± 5, 62 ± 19, and 122 ± 21 SD g d-1, respectively. Measured water intake in each group was 0, 111 ± 2, 64 ± 3, and 134 ± 15 SD g d-1, respectively. On average, WIR underestimated measured water intake in each group. Errors were lowest but most variable for gulls fed water only (-2.2% ± 32.8%) compared with gulls fed fish only (-9.0% ± 5.4%) or fish and water (-9.0% ± 7.0%). Compared with measured water intake, errors in WIR were relatively low overall (-6.9% ± 17.4%) and comparable to previous validation studies. The difference in TBW determined by BCA versus isotopic dilution ranged between -1.02% and +8.59% of mass. On average, TBW measured isotopically (632 ± 24 g kg-1) overestimated true body water by a factor of 1.033
Light-induced equilibration kinetics in membrane-bound photosynthetic reaction centers: Nonlinear dynamic effects in multiple scattering media
The role of aerodynamic forces in a mathematical model for suspension bridges
In a fish-bone model for suspension bridges studied by us in a previous paper
we introduce linear aerodynamic forces. We numerically analyze the role of
these forces and we theoretically show that they do not influence the onset of
torsional oscillations. This suggests a new explanation for the origin of
instability in suspension bridges: it is a combined interaction between
structural nonlinearity and aerodynamics and it follows a precise pattern. This
gives an answer to a long-standing question about the origin of torsional
instability in suspension bridges
Further restrictions on the topology of stationary black holes in five dimensions
We place further restriction on the possible topology of stationary
asymptotically flat vacuum black holes in 5 spacetime dimensions. We prove that
the horizon manifold can be either a connected sum of Lens spaces and "handles"
, or the quotient of by certain finite groups of
isometries (with no "handles"). The resulting horizon topologies include Prism
manifolds and quotients of the Poincare homology sphere. We also show that the
topology of the domain of outer communication is a cartesian product of the
time direction with a finite connected sum of 's
and 's, minus the black hole itself. We do not assume the existence of
any Killing vector beside the asymptotically timelike one required by
definition for stationarity.Comment: LaTex, 22 pages, 9 figure
The thermodynamic evolution of the cosmological event horizon
By manipulating the integral expression for the proper radius of the
cosmological event horizon (CEH) in a Friedmann-Robertson-Walker (FRW)
universe, we obtain an analytical expression for the change \dd R_e in
response to a uniform fluctuation \dd\rho in the average cosmic background
density . We stipulate that the fluctuation arises within a vanishing
interval of proper time, during which the CEH is approximately stationary, and
evolves subsequently such that \dd\rho/\rho is constant. The respective
variations 2\pi R_e \dd R_e and \dd E_e in the horizon entropy and
enclosed energy should be therefore related through the cosmological
Clausius relation. In that manner we find that the temperature of the CEH
at an arbitrary time in a flat FRW universe is , which recovers
asymptotically the usual static de Sitter temperature. Furthermore, it is
proven that during radiation-dominance and in late times the CEH conforms to
the fully dynamical First Law T_e \drv S_e = P\drv V_e - \drv E_e, where
is the enclosed volume and is the average cosmic pressure.Comment: 6 page
Isogenic Pairs of hiPSC-CMs with Hypertrophic Cardiomyopathy/LVNC-Associated ACTC1 E99K Mutation Unveil Differential Functional Deficits
Hypertrophic cardiomyopathy (HCM) is a primary disorder of contractility in heart muscle. To gain mechanistic insight and guide pharmacological rescue, this study models HCM using isogenic pairs of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) carrying the E99K-ACTC1 cardiac actin mutation. In both 3D engineered heart tissues and 2D monolayers, arrhythmogenesis was evident in all E99K-ACTC1 hiPSC-CMs. Aberrant phenotypes were most common in hiPSC-CMs produced from the heterozygote father. Unexpectedly, pathological phenotypes were less evident in E99K-expressing hiPSC-CMs from the two sons. Mechanistic insight from Ca2+ handling expression studies prompted pharmacological rescue experiments, wherein dual dantroline/ranolazine treatment was most effective. Our data are consistent with E99K mutant protein being a central cause of HCM but the three-way interaction between the primary genetic lesion, background (epi)genetics, and donor patient age may influence the pathogenic phenotype. This illustrates the value of isogenic hiPSC-CMs in genotype-phenotype correlations
A Mechanism-Based Explanation of the Institutionalization of Semantic Technologies in the Financial Industry
Part 3: Creating Value through ApplicationsInternational audienceThis paper explains how the financial industry is solving its data, risk management, and associated vocabulary problems using semantic technologies. The paper is the first to examine this phenomenon and to identify the social and institutional mechanisms being applied to socially construct a standard common vocabulary using ontology-based models. This standardized ontology-based common vocabulary will underpin the design of next generation of semantically-enabled information systems (IS) for the financial industry. The mechanisms that are helping institutionalize this common vocabulary are identified using a longitudinal case study, whose embedded units of analysis focus on central agents of change—the Enterprise Data Management Council and the Object Management Group. All this has important implications for society, as it is intended that semantically-enabled IS will, for example, provide stakeholders, such as regulators, with better transparency over systemic risks to national and international financial systems, thereby mitigating or avoiding future financial crises
De Sitter and Schwarzschild-De Sitter According to Schwarzschild and De Sitter
When de Sitter first introduced his celebrated spacetime, he claimed,
following Schwarzschild, that its spatial sections have the topology of the
real projective space RP^3 (that is, the topology of the group manifold SO(3))
rather than, as is almost universally assumed today, that of the sphere S^3.
(In modern language, Schwarzschild was disturbed by the non-local correlations
enforced by S^3 geometry.) Thus, what we today call "de Sitter space" would not
have been accepted as such by de Sitter. There is no real basis within
classical cosmology for preferring S^3 to RP^3, but the general feeling appears
to be that the distinction is in any case of little importance. We wish to
argue that, in the light of current concerns about the nature of de Sitter
space, this is a mistake. In particular, we argue that the difference between
"dS(S^3)" and "dS(RP^3)" may be very important in attacking the problem of
understanding horizon entropies. In the approach to de Sitter entropy via
Schwarzschild-de Sitter spacetime, we find that the apparently trivial
difference between RP^3 and S^3 actually leads to very different perspectives
on this major question of quantum cosmology.Comment: 26 pages, 8 figures, typos fixed, references added, equation numbers
finally fixed, JHEP versio
Magnetoelectric ordering of BiFeO3 from the perspective of crystal chemistry
In this paper we examine the role of crystal chemistry factors in creating
conditions for formation of magnetoelectric ordering in BiFeO3. It is generally
accepted that the main reason of the ferroelectric distortion in BiFeO3 is
concerned with a stereochemical activity of the Bi lone pair. However, the lone
pair is stereochemically active in the paraelectric orthorhombic beta-phase as
well. We demonstrate that a crucial role in emerging of phase transitions of
the metal-insulator, paraelectric-ferroelectric and magnetic disorder-order
types belongs to the change of the degree of the lone pair stereochemical
activity - its consecutive increase with the temperature decrease. Using the
structural data, we calculated the sign and strength of magnetic couplings in
BiFeO3 in the range from 945 C down to 25 C and found the couplings, which
undergo the antiferromagnetic-ferromagnetic transition with the temperature
decrease and give rise to the antiferromagnetic ordering and its delay in
regard to temperature, as compared to the ferroelectric ordering. We discuss
the reasons of emerging of the spatially modulated spin structure and its
suppression by doping with La3+.Comment: 18 pages, 5 figures, 3 table
Finite Element Convergence for the Joule Heating Problem with Mixed Boundary Conditions
We prove strong convergence of conforming finite element approximations to
the stationary Joule heating problem with mixed boundary conditions on
Lipschitz domains in three spatial dimensions. We show optimal global
regularity estimates on creased domains and prove a priori and a posteriori
bounds for shape regular meshes.Comment: Keywords: Joule heating problem, thermistors, a posteriori error
analysis, a priori error analysis, finite element metho
- …
