1,911 research outputs found
A review of climate change and the implementation of marine biodiversity legislation in the United Kingdom
1. Marine legislation, the key means by which the conservation of marine biodiversity is achieved, has been developing since the 1960s. In recent decades, an increasing focus on ‘holistic’ policy development is evident, compared with earlier ‘piecemeal’ sectoral approaches. Important marine legislative tools being used in the United Kingdom, and internationally, include the designation of marine protected areas and the Marine Strategy Framework Directive (MSFD) with its aim of meeting ‘Good Environmental Status’ (GES) for European seas by 2020. 2. There is growing evidence of climate change impacts on marine biodiversity, which may compromise the effectiveness of any legislation intended to promote sustainable marine resource management. 3. A review of key marine biodiversity legislation relevant to the UK shows climate change was not considered in the drafting of much early legislation. Despite the huge increase in knowledge of climate change impacts in recent decades, legislation is still limited in how it takes these impacts into account. There is scope, however, to account for climate change in implementing much of the legislation through (a) existing references to environmental variability; (b) review cycles; and (c) secondary legislation and complementary policy development. 4. For legislation relating to marine protected areas (e.g. the EC Habitats and Birds Directives), climate change has generally not been considered in the site-designation process, or for ongoing management, with the exception of the Marine (Scotland) Act. Given that changing environmental conditions (e.g. rising temperatures and ocean acidification) directly affect the habitats and species that sites are designated for, how this legislation is used to protect marine biodiversity in a changing climate requires further consideration. 5. Accounting for climate change impacts on marine biodiversity in the development and implementation of legislation is vital to enable timely, adaptive management responses. Marine modelling can play an important role in informing management decisions
Effects of river water and salinity on the toxicity of deltamethrin to freshwater shrimp, cladoceran, and fish
Deltamethrin is a pyrethroid insecticide used extensively to control invertebrate pests on cotton and other crops. It is acutely toxic to nontarget aquatic organisms, but existing toxicity data are mostly from toxicity tests using purified laboratory water that differs greatly from the turbid, high-conductivity rivers in the cotton-growing regions of Australia. The aim of this study was to determine whether the water quality variables conductivity, suspended particles, and dissolved organic matter alter the toxicity of deltamethrin to freshwater crustaceans and a fish. We tested three Australian native species: a cladoceran (Ceriodaphnia cf. dubia), a freshwater shrimp (Paratya australiensis), and larvae of the eastern rainbow fish (Melanotaenia duboulayi). Conductivity of the test solutions ranged from 200 to 750 μS/cm, but such changes did not modify the toxicity of deltamethrin to any of the test species. However, the toxicity of deltamethrin to C. cf. dubia and P. australiensis in river water was significantly decreased (1.8-fold to 6.3-fold reduction) compared to that in laboratory water. Variability in the toxicity data limited our ability to detect differences between laboratory and river water for M. duboulayi. Despite reductions in toxicity in natural waters, deltamethrin remained highly toxic [all L(E)C50 values <0.26 μg/L] to all organisms tested; thus, further investigation of the hazard of deltamethrin is warranted. © 2008 Springer Science+Business Media, LLC
Periodic Host Absence Can Select for Higher or Lower Parasite Transmission Rates
This paper explores the effect of discontinuous periodic host absence on the evolution of pathogen transmission rates by using Ro maximisation techniques. The physiological consequence of an increased transmission rate can be either an increased virulence, i.e. there is a transmission-virulence trade-off or ii) a reduced between season survival, i.e. there is a transmission-survival trade-off. The results reveal that the type of trade-off determines the direction of selection, with relatively longer periods of host absence selecting for higher transmission rates in the presence of a trade-off between transmission and virulence but lower transmission rates in the presence of a trade-of between transmission and between season survival. The fact that for the transmission-virulence trade-off both trade-off parameters operate during host presence whereas for the transmission-survival trade-off one operates during host presence (transmission) and the other (survival) during the period of host absence is the main cause for this difference in selection direction. Moreover, the period of host absence seems to be the key determinant of the pathogens transmission rate. Comparing plant patho-systems with contrasting biological features suggests that airborne plant pathogen respond differently to longer periods of host absence than soil-borne plant pathogens
Cure Control: Strategies for Using Dielectric Sensors
Dielectric measurements are becoming increasingly important as a means for feedback control in the area of polymer processing. The changes in dielectric response as a function of changing molecular weight or cross link density have been the subject of much research for the last 50 years [1]. Only now is process control through dielectric feedback becoming a reality due to recent advances in dielectric measurement capability [2]. Microdielectric sensors are now available which function down to frequencies characteristic of mechanical measurements (less than 1Hz) and can be inserted directly into curing composite structures. By monitoring the dielectric properties (permittivity and loss factor) at several frequencies, the ionic conductivity can be extracted [3] with the aid of commercial software packages in real time. This paper investigates the use of first and second derivative information (log ionic conductivity with respect to time) for controlling certain key processin-ing steps during composite curing
Phytostabilization of metals in mine soils using Brassica juncea in combination with organic amendments
Background and aims The high metal bioavailability and the poor conditions of mine soils yield a low plant biomass, limiting the application of phytoremediation techniques. A greenhouse experiment was performed to evaluate the effects of organic amendments on metal stabilization and the potential of Brassica juncea L. for phytostabilization in mine soils. Methods Plants were grown in pots filled with soils collected from two mine sites located in Central Spain mixed with 0, 30 and 60 tha?1 of pine bark compost and horse- and sheep-manure compost. Plant biomass and metal concentrations in roots and shoots were measured. Metal bioavailability was assessed using a rhizosphere-based method (rhizo), which consists of a mixture of low-molecular-weight organic acids to simulate root exudates. Results Manure reduced metal concentrations in shoots (10?50 % reduction of Cu and 40?80 % of Zn in comparison with non-amended soils), bioconcentration factor (10?50 % of Cu and 40?80 % of Zn) and metal bioavailability in soil (40?50 % of Cu and 10?30 % of Zn) due to the high pH and the contribution of organic matter. Manure improved soil fertility and was also able to increase plant biomass (5?20 times in shoots and 3?30 times in roots), which resulted in a greater amount of metals removed from soil and accumulated in roots (increase of 2?7 times of Cu and Zn). Plants grown in pine bark treatments and in non-amended soils showed a limited biomass and high metal concentrations in shoots. Conclusions The addition of manure could be effective for the stabilization of metals and for enhancing the phytostabilization ability of B. juncea in mine soils. In this study, this species resulted to be a potential candidate for phytostabilization in combination with manure, differing from previous results, in which B. juncea had been recognized as a phytoextraction plant
Development of microspheres for biomedical applications: a review
An overview of microspheres manufactured for use in biomedical applications based on recent literature is presented in this review. Different types of glasses (i.e. silicate, borate, and phosphates), ceramics and polymer-based microspheres (both natural and synthetic) in the form of porous , non-porous and hollow structures that are either already in use or are currently being investigated within the biomedical area are discussed. The advantages of using microspheres in applications such as drug delivery, bone tissue engineering and regeneration, absorption and desorption of substances, kinetic release of the loaded drug components are also presented. This review also reports on the preparation and characterisation methodologies used for the manufacture of these microspheres. Finally, a brief summary of the existing challenges associated with processing these microspheres which requires further research and development are presented
PathogenFinder - Distinguishing Friend from Foe Using Bacterial Whole Genome Sequence Data.
Although the majority of bacteria are harmless or even beneficial to their host, others are highly virulent and can cause serious diseases, and even death. Due to the constantly decreasing cost of high-throughput sequencing there are now many completely sequenced genomes available from both human pathogenic and innocuous strains. The data can be used to identify gene families that correlate with pathogenicity and to develop tools to predict the pathogenicity of newly sequenced strains, investigations that previously were mainly done by means of more expensive and time consuming experimental approaches. We describe PathogenFinde
TonEBP suppresses adipogenesis and insulin sensitivity by blocking epigenetic transition of PPAR gamma 2
TonEBP is a key transcription factor in cellular adaptation to hypertonic stress, and also in macrophage activation. Since TonEBP is involved in inflammatory diseases such as rheumatoid arthritis and atherosclerosis, we asked whether TonEBP played a role in adipogenesis and insulin resistance. Here we report that TonEBP suppresses adipogenesis and insulin signaling by inhibiting expression of the key transcription factor PPAR gamma 2. TonEBP binds to the PPAR gamma 2 promoter and blocks the epigenetic transition of the locus which is required for the activation of the promoter. When TonEBP expression is reduced, the epigenetic transition and PPAR gamma 2 expression are markedly increased leading to enhanced adipogenesis and insulin response while inflammation is reduced. Thus, TonEBP is an independent determinant of adipose insulin sensitivity and inflammation. TonEBP is an attractive therapeutic target for insulin resistance in lieu of PPAR gamma agonistsopen0
Transgressive phenotypes and generalist pollination in the floral evolution of Nicotiana polyploids
This is the author's proofThe file attached is the Accepted/final draft post-refereeing version of the article. 6 month embargo now lapsed
Diagnostic accuracy of a loop-mediated isothermal PCR assay for detection of Orientia tsutsugamushi during acute Scrub Typhus infection
BACKGROUND: There is an urgent need to develop rapid and accurate point-of-care (POC) technologies for acute scrub typhus diagnosis in low-resource, primary health care settings to guide clinical therapy. METHODOLOGY/PRINCIPAL FINDINGS: In this study we present the clinical evaluation of loop-mediated isothermal PCR assay (LAMP) in the context of a prospective fever study, including 161 patients from scrub typhus-endemic Chiang Rai, northern Thailand. A robust reference comparator set comprising following 'scrub typhus infection criteria' (STIC) was used: a) positive cell culture isolate and/or b) an admission IgM titer ≥1∶12,800 using the 'gold standard' indirect immunofluorescence assay (IFA) and/or c) a 4-fold rising IFA IgM titer and/or d) a positive result in at least two out of three PCR assays. Compared to the STIC criteria, all PCR assays (including LAMP) demonstrated high specificity ranging from 96-99%, with sensitivities varying from 40% to 56%, similar to the antibody based rapid test, which had a sensitivity of 47% and a specificity of 95%. CONCLUSIONS/SIGNIFICANCE: The diagnostic accuracy of the LAMP assay was similar to realtime and nested conventional PCR assays, but superior to the antibody-based rapid test in the early disease course. The combination of DNA- and antibody-based detection methods increased sensitivity with minimal reduction of specificity, and expanded the timeframe of adequate diagnostic coverage throughout the acute phase of scrub typhus
- …
