229 research outputs found
Navigating through digital folders uses the same brain structures as real world navigation
Efficient storage and retrieval of digital data is the focus of much commercial and academic attention. With personal computers, there are two main ways to retrieve files: hierarchical navigation and query-based search. In navigation, users move down their virtual folder hierarchy until they reach the folder in which the target item is stored. When searching, users first generate a query specifying some property of the target file (e.g., a word it contains), and then select the relevant file when the search engine returns a set of results. Despite advances in search technology, users prefer retrieving files using virtual folder navigation, rather than the more flexible query-based search. Using fMRI we provide an explanation for this phenomenon by demonstrating that folder navigation results in activation of the posterior limbic (including the retrosplenial cortex) and parahippocampal regions similar to that previously observed during real-world navigation in both animals and humans. In contrast, search activates the left inferior frontal gyrus, commonly observed in linguistic processing. We suggest that the preference for navigation may be due to the triggering of automatic object finding routines and lower dependence on linguistic processing. We conclude with suggestions for future computer systems design
Application of Graphene within Optoelectronic Devices and Transistors
Scientists are always yearning for new and exciting ways to unlock graphene's
true potential. However, recent reports suggest this two-dimensional material
may harbor some unique properties, making it a viable candidate for use in
optoelectronic and semiconducting devices. Whereas on one hand, graphene is
highly transparent due to its atomic thickness, the material does exhibit a
strong interaction with photons. This has clear advantages over existing
materials used in photonic devices such as Indium-based compounds. Moreover,
the material can be used to 'trap' light and alter the incident wavelength,
forming the basis of the plasmonic devices. We also highlight upon graphene's
nonlinear optical response to an applied electric field, and the phenomenon of
saturable absorption. Within the context of logical devices, graphene has no
discernible band-gap. Therefore, generating one will be of utmost importance.
Amongst many others, some existing methods to open this band-gap include
chemical doping, deformation of the honeycomb structure, or the use of carbon
nanotubes (CNTs). We shall also discuss various designs of transistors,
including those which incorporate CNTs, and others which exploit the idea of
quantum tunneling. A key advantage of the CNT transistor is that ballistic
transport occurs throughout the CNT channel, with short channel effects being
minimized. We shall also discuss recent developments of the graphene tunneling
transistor, with emphasis being placed upon its operational mechanism. Finally,
we provide perspective for incorporating graphene within high frequency
devices, which do not require a pre-defined band-gap.Comment: Due to be published in "Current Topics in Applied Spectroscopy and
the Science of Nanomaterials" - Springer (Fall 2014). (17 pages, 19 figures
VLSI Signal Processing for QNDE of Highway Bridge
Evaluation of highway bridges using quantitative nondestructive techniques is a great challenge. A research project currently being carried out at the ATLSS center of Lehigh University is to investigate the issue involved in QNDE of large structures with an emphasis on highway bridges. Our approach is to develop a remotely accessible, economically affordable, and highly reliable continuous monitoring system using advanced signal processing techniques and very large scale integration(VLSI) technology. The result of this project will dramatically lower the cost and enhance the capability of monitoring highway bridges. A particular fatigue damage monitoring system is being developed because fatigue damage assessment has been an important issue in bridge inspection and evaluation. The algorithm used for estimating fatigue damages requires rainflow counting, stress histogram generation, and equivalent stress range calculation. Using calculated equivalent stress range and appropriate AASHTO fatigue design curve, the total number of fatigue cycles can be estimated. The remaining fatigue life of the monitored bridge can be obtained by subtracting the number of used fatigue cycles from the total number of fatigue cycles. The entire system consists of sensors and processing modules distributed on a bridge and powered by small batteries, a radio repeater near the bridge powered by a larger battery, and a computer at central facility. The sensors and processor modules will be capable of collecting and processing data on site in real time. Processed data from each individual sensor and processor modules on the bridge will be transmitted to the radio repeater
Early visual ERPs show stable body-sensitive patterns over a 4-week test period
Event-related potential (ERP) studies feature among the most cited papers in the field of body representation, with recent research highlighting the potential of ERPs as neuropsychiatric biomarkers. Despite this, investigation into how reliable early visual ERPs and body-sensitive effects are over time has been overlooked. This study therefore aimed to assess the stability of early body-sensitive effects and visual P1, N1 and VPP responses. Participants were asked to identify pictures of their own bodies, other bodies and houses during an EEG test session that was completed at the same time, once a week, for four consecutive weeks. Results showed that amplitude and latency of early visual components and their associated body-sensitive effects were stable over the 4-week period. Furthermore, correlational analyses revealed that VPP component amplitude might be more reliable than VPP latency and specific electrode sites might be more robust indicators of body-sensitive cortical activity than others. These findings suggest that visual P1, N1 and VPP responses, alongside body-sensitive N1/VPP effects, are robust indications of neuronal activity. We conclude that these components are eligible to be considered as electrophysiological biomarkers relevant to body representation
Metaphors in Nanomedicine: The Case of Targeted Drug Delivery
International audienceThe promises of nanotechnology have been framed by a variety of metaphors, that not only channel the attention of the public, orient the questions asked by researchers, and convey epistemic choices closely linked to ethical preferences. In particular, the image of the 'therapeutic missile' commonly used to present targeted drug delivery devices emphasizes precision, control, surveillance and efficiency. Such values are highly praised in the current context of crisis of pharmaceutical innovation where military metaphors foster a general mobilization of resources from multiple fields of cutting-edge research. The missile metaphor, reminiscent of Paul Ehrlich's 'magic bullet', has framed the problem in simple terms: how to deliver the right dose in the right place at the right moment? Chemists, physicists and engineers who design multi-functional devices operating in vitro can think in such terms, as long as the devices are not actually operating through the messy environment of the body. A close look at what has been done and what remains to be done suggests that the metaphor of the "therapeutic missile" is neither sufficient, nor even necessary. Recent developments in nanomedicine suggest that therapeutic efficacy cannot be obtained without negotiating with the biological milieu and taking advantage of what it affords. An 'oïkological' approach seems more appropriate, more heuristic and more promising than the popular missile. It is based on the view of organism as an oikos that has to be carefully managed. The dispositions of nanocapsules have to be coupled with the affordances of the environment. As it requires dealing with nanoparticles as relational entities (defined by their potential for interactions) rather than as stable substances (defined by intrinsic properties) this metaphor eventually might well change research priorities in nanotechnology in general
Recommended from our members
Recognition of dance-like actions: memory for static posture or dynamic movement?
Dance-like actions are complex visual stimuli involving multiple changes in body posture across time and space. Visual perception research has demonstrated a difference between the processing of dynamic body movement and the processing of static body posture. Yet, it is unclear whether this processing dissociation continues during the retention of body movement and body form in visual working memory (VWM). When observing a dance-like action, it is likely that static snapshot images of body posture will be retained alongside dynamic images of the complete motion. Therefore, we hypothesized that, as in perception, posture and movement would differ in VWM. Additionally, if body posture and body movement are separable in VWM, as form- and motion-based items, respectively, then differential interference from intervening form and motion tasks should occur during recognition. In two experiments, we examined these hypotheses. In Experiment 1, the recognition of postures and movements was tested in conditions in which the formats of the study and test stimuli matched (movement-study to movement-test, posture-study to posture-test) or mismatched (movement-study to posture-test, posture-study to movement-test). In Experiment 2, the recognition of postures and movements was compared after intervening form and motion tasks. These results indicated that (1) the recognition of body movement based only on posture is possible, but it is significantly poorer than recognition based on the entire movement stimulus, and (2) form-based interference does not impair memory for movements, although motion-based interference does. We concluded that, whereas static posture information is encoded during the observation of dance-like actions, body movement and body posture differ in VWM
Randomised controlled trial of food elimination diet based on IgG antibodies for the prevention of migraine like headaches
<p>Abstract</p> <p>Background</p> <p>Research suggests that food intolerance may be a precipitating factor for migraine like headaches.</p> <p>Aim</p> <p>To evaluate the effectiveness of the ELISA (Enzyme Linked Immuno-Sorbent Assay) Test and subsequent dietary elimination advice for the prevention of migraine like headaches.</p> <p>Design</p> <p>Randomised controlled trial.</p> <p>Setting</p> <p>Community based volunteers in the UK.</p> <p>Participants</p> <p>Volunteers who met the inclusion criteria for migraine like headaches and had one or more food intolerance were included in the study. Participants received either a true diet (n = 84) or a sham diet (n = 83) sheet. Participants were advised to remove the intolerant foods from their diet for 12 weeks.</p> <p>Main outcome measures</p> <p>Number of headache days over a 12 week period (item A MIDAS questionnaire). Other measures includes the total MIDAS score and total HIT-6 score.</p> <p>Results</p> <p>The results indicated a small decrease in the number of migraine like headaches over 12 weeks, although this difference was not statistically significant (IRR 1.15 95% CI 0.94 to 1.41, p = 0.18). At the 4 week assessment, use of the ELISA test with subsequent diet elimination advice significantly reduced the number of migraine like headaches (IRR 1.23 95%CI 1.01 to 1.50, p = 0.04). The disability and impact on daily life of migraines were not significantly different between the true and sham diet groups.</p> <p>Conclusions</p> <p>Use of the ELISA test with subsequent diet elimination advice did not reduce the disability or impact on daily life of migraine like headaches or the number of migraine like headaches at 12 weeks but it did significantly reduce the number of migraine like headaches at 4 weeks.</p> <p>Trial registration number</p> <p>ISRCTN: <a href="http://www.controlled-trials.com/ISRTCN89559672">ISRTCN89559672</a></p
A Multi-Center, Qualitative Assessment of Pediatrician and Maternal Perspectives on Rotavirus Vaccines and the Detection of Porcine circovirus
<p>Abstract</p> <p>Background</p> <p>In 2010, researchers using novel laboratory techniques found that US-licensed rotavirus vaccines contain DNA or DNA fragments from <it>Porcine circovirus </it>(PCV), a virus common among pigs but not believed to cause illness in humans. We sought to understand pediatricians' and mothers' perspectives on this finding.</p> <p>Methods</p> <p>We conducted three iterations of focus groups for pediatricians and non-vaccine hesitant mothers in Seattle, WA, Cincinnati, OH, and Rochester, NY. Focus groups explored perceptions of rotavirus disease, rotavirus vaccination, and attitudes about the detection of PCV material in rotavirus vaccines.</p> <p>Results</p> <p>Pediatricians understood firsthand the success of rotavirus vaccines in preventing severe acute gastroenteritis among infants and young children. They measured this benefit against the theoretical risk of DNA material from PCV in rotavirus vaccines, determining overall that the PCV finding was of no clinical significance. Particularly influential was the realization that the large, randomized clinical trials that found both vaccines to be highly effective and safe were conducted with DNA material from PCV already in the vaccines.</p> <p>Most mothers supported the ideal of full disclosure regarding vaccination risks and benefits. However, with a scientific topic of this complexity, simplified information regarding PCV material in rotavirus vaccines seemed frightening and suspicious, and detailed information was frequently overwhelming. Mothers often remarked that if they did not understand a medical or technical topic regarding their child's health, they relied on their pediatrician's guidance.</p> <p>Many mothers and pediatricians were also concerned that persons who abstain from pork consumption for religious or personal reasons may have unsubstantiated fears of the PCV finding.</p> <p>Conclusions</p> <p>Pediatricians considered the detection of DNA material from PCV in rotavirus vaccines a "non-issue" and reported little hesitation in continuing to recommend the vaccines. Mothers desired transparency, but ultimately trusted their pediatrician's recommendation. Both vaccines are currently approved for their intended use, and no risk of human PCV illness has been reported. Communicating this topic to pediatricians and mothers requires sensitivity to a broad range of technical understanding and personal concerns.</p
Stressed but Stable: Canopy Loss Decreased Species Synchrony and Metabolic Variability in an Intertidal Hard-Bottom Community
The temporal stability of aggregate community properties depends on the dynamics of the component species. Since species growth can compensate for the decline of other species, synchronous species dynamics can maintain stability (i.e. invariability) in aggregate properties such as community abundance and metabolism. In field experiments we tested the separate and interactive effects of two stressors associated with storminess–loss of a canopy-forming species and mechanical disturbances–on species synchrony and community respiration of intertidal hard-bottom communities on Helgoland Island, NE Atlantic. Treatments consisted of regular removal of the canopy-forming seaweed Fucus serratus and a mechanical disturbance applied once at the onset of the experiment in March 2006. The level of synchrony in species abundances was assessed from estimates of species percentage cover every three months until September 2007. Experiments at two sites consistently showed that canopy loss significantly reduced species synchrony. Mechanical disturbance had neither separate nor interactive effects on species synchrony. Accordingly, in situ measurements of CO2-fluxes showed that canopy loss, but not mechanical disturbances, significantly reduced net primary productivity and temporal variation in community respiration during emersion periods. Our results support the idea that compensatory dynamics may stabilise aggregate properties. They further suggest that the ecological consequences of the loss of a single structurally important species may be stronger than those derived from smaller-scale mechanical disturbances in natural ecosystems
- …
