2,836 research outputs found
Subtle but significant effects of CO<inf>2</inf> acidified seawater on embryos of the intertidal snail, Littorina obtusata
Our understanding of the effects of ocean acidification on whole organism function is growing, but most current information is for adult stages of development. Here, we show the effects of reduced pH seawater (pH 7.6) on aspects of the development, physiology and behaviour of encapsulated embryos of the marine intertidal gastropod Littorina obtusata. We found reduced viability and increased development times under reduced pH conditions, and the embryos had significantly altered behaviours and physiologies. In acidified seawater, embryos spent more time stationary, had slower rotation rates, spent less time crawling, but increased their movement periodicity compared with those maintained under control conditions. Larval and adult heart rates were significantly lower in acidified seawater, and hatchling snails had an altered shell morphology (lateral length and spiral shell length) compared to control snails. Our findings show that ocean acidification may have multiple, subtle effects during the early development of marine animals that may have implications for their survival beyond those predicted using later life stages. © Inter-Research 2009
Jet Trimming
Initial state radiation, multiple interactions, and event pileup can
contaminate jets and degrade event reconstruction. Here we introduce a
procedure, jet trimming, designed to mitigate these sources of contamination in
jets initiated by light partons. This procedure is complimentary to existing
methods developed for boosted heavy particles. We find that jet trimming can
achieve significant improvements in event reconstruction, especially at high
energy/luminosity hadron colliders like the LHC.Comment: 20 pages, 11 figures, 3 tables - Minor changes to text/figure
The mass area of jets
We introduce a new characteristic of jets called mass area. It is defined so
as to measure the susceptibility of the jet's mass to contamination from soft
background. The mass area is a close relative of the recently introduced
catchment area of jets. We define it also in two variants: passive and active.
As a preparatory step, we generalise the results for passive and active areas
of two-particle jets to the case where the two constituent particles have
arbitrary transverse momenta. As a main part of our study, we use the mass area
to analyse a range of modern jet algorithms acting on simple one and
two-particle systems. We find a whole variety of behaviours of passive and
active mass areas depending on the algorithm, relative hardness of particles or
their separation. We also study mass areas of jets from Monte Carlo simulations
as well as give an example of how the concept of mass area can be used to
correct jets for contamination from pileup. Our results show that the
information provided by the mass area can be very useful in a range of
jet-based analyses.Comment: 36 pages, 12 figures; v2: improved quality of two plots, added entry
in acknowledgments, nicer form of formulae in appendix A; v3: added section
with MC study and pileup correction, version accepted by JHE
Identifying Boosted Objects with N-subjettiness
We introduce a new jet shape -- N-subjettiness -- designed to identify
boosted hadronically-decaying objects like electroweak bosons and top quarks.
Combined with a jet invariant mass cut, N-subjettiness is an effective
discriminating variable for tagging boosted objects and rejecting the
background of QCD jets with large invariant mass. In efficiency studies of
boosted W bosons and top quarks, we find tagging efficiencies of 30% are
achievable with fake rates of 1%. We also consider the discovery potential for
new heavy resonances that decay to pairs of boosted objects, and find
significant improvements are possible using N-subjettiness. In this way,
N-subjettiness combines the advantages of jet shapes with the discriminating
power seen in previous jet substructure algorithms.Comment: 26 pages, 26 figures, 2 tables; v2: references added; v3: discussion
of results extende
Jet Substructure Without Trees
We present an alternative approach to identifying and characterizing jet
substructure. An angular correlation function is introduced that can be used to
extract angular and mass scales within a jet without reference to a clustering
algorithm. This procedure gives rise to a number of useful jet observables. As
an application, we construct a top quark tagging algorithm that is competitive
with existing methods.Comment: 22 pages, 16 figures, version accepted by JHE
Hollow Fiber Bioreactors for In Vivo-like Mammalian Tissue Culture
Tissue culture has been used for over 100 years to study cells and responses ex vivo. The convention of this technique is the growth of anchorage dependent cells on the 2-dimensional surface of tissue culture plastic. More recently, there is a growing body of data demonstrating more in vivo-like behaviors of cells grown in 3-dimensional culture systems. This manuscript describes in detail the set-up and operation of a hollow fiber bioreactor system for the in vivo-like culture of mammalian cells. The hollow fiber bioreactor system delivers media to the cells in a manner akin to the delivery of blood through the capillary networks in vivo. The system is designed to fit onto the shelf of a standard CO2 incubator and is simple enough to be set-up by any competent cell biologist with a good understanding of aseptic technique. The systems utility is demonstrated by culturing the hepatocarcinoma cell line HepG2/C3A for 7 days. Further to this and in line with other published reports on the functionality of cells grown in 3-dimensional culture systems the cells are shown to possess increased albumin production (an important hepatic function) when compared to standard 2-dimensional tissue culture
Multivariate discrimination and the Higgs + W/Z search
A systematic method for optimizing multivariate discriminants is developed
and applied to the important example of a light Higgs boson search at the
Tevatron and the LHC. The Significance Improvement Characteristic (SIC),
defined as the signal efficiency of a cut or multivariate discriminant divided
by the square root of the background efficiency, is shown to be an extremely
powerful visualization tool. SIC curves demonstrate numerical instabilities in
the multivariate discriminants, show convergence as the number of variables is
increased, and display the sensitivity to the optimal cut values. For our
application, we concentrate on Higgs boson production in association with a W
or Z boson with H -> bb and compare to the irreducible standard model
background, Z/W + bb. We explore thousands of experimentally motivated,
physically motivated, and unmotivated single variable discriminants. Along with
the standard kinematic variables, a number of new ones, such as twist, are
described which should have applicability to many processes. We find that some
single variables, such as the pull angle, are weak discriminants, but when
combined with others they provide important marginal improvement. We also find
that multiple Higgs boson-candidate mass measures, such as from mild and
aggressively trimmed jets, when combined may provide additional discriminating
power. Comparing the significance improvement from our variables to those used
in recent CDF and DZero searches, we find that a 10-20% improvement in
significance against Z/W + bb is possible. Our analysis also suggests that the
H + W/Z channel with H -> bb is also viable at the LHC, without requiring a
hard cut on the W/Z transverse momentum.Comment: 41 pages, 5 tables, 29 figure
Testing A (Stringy) Model of Quantum Gravity
I discuss a specific model of space-time foam, inspired by the modern
non-perturbative approach to string theory (D-branes). The model views our
world as a three brane, intersecting with D-particles that represent stringy
quantum gravity effects, which can be real or virtual. In this picture, matter
is represented generically by (closed or open) strings on the D3 brane
propagating in such a background. Scattering of the (matter) strings off the
D-particles causes recoil of the latter, which in turn results in a distortion
of the surrounding space-time fluid and the formation of (microscopic, i.e.
Planckian size) horizons around the defects. As a mean-field result, the
dispersion relation of the various particle excitations is modified, leading to
non-trivial optical properties of the space time, for instance a non-trivial
refractive index for the case of photons or other massless probes. Such models
make falsifiable predictions, that may be tested experimentally in the
foreseeable future. I describe a few such tests, ranging from observations of
light from distant gamma-ray-bursters and ultra high energy cosmic rays, to
tests using gravity-wave interferometric devices and terrestrial particle
physics experients involving, for instance, neutral kaons.Comment: 25 pages LATEX, four figures incorporated, uses special proceedings
style. Invited talk at the third international conference on Dark Matter in
Astro and Particle Physics, DARK2000, Heidelberg, Germany, July 10-15 200
Non-global logarithms and jet algorithms in high-pT jet shapes
We consider jet-shape observables of the type proposed recently, where the
shapes of one or more high-pT jets, produced in a multi-jet event with definite
jet multiplicity, may be measured leaving other jets in the event unmeasured.
We point out the structure of the full next-to-leading logarithmic resummation
specifically including resummation of non-global logarithms in the leading-Nc
limit and emphasising their properties. We also point out differences between
jet algorithms in the context of soft gluon resummation for such observables.Comment: 22 pages, 4 figures. Title and a few words changed. Several typos
corrected. Version accepted by JHE
Triboson interpretations of the ATLAS diboson excess
The ATLAS excess in fat jet pair production is kinematically compatible with
the decay of a heavy resonance into two gauge bosons plus an extra particle.
This hypothesis would explain the absence of such a large excess in the
analogous CMS analysis of fat dijet final states, as well as the negative
results of diboson resonance searches in the semi-leptonic decay modes. If the
extra particle is the Higgs boson, this hypothesis might also explain
-statistical fluctuations aside- why the CMS search for WH resonances in the
semi-leptonic channel finds some excess while in the fully hadronic one it does
not have a significant deviation.Comment: LaTeX 17 pages. v2: Enlarged discussion to address CMS WH excess. v3:
Added discussion of diboson helicities. Final version to appear in JHE
- …
