813 research outputs found

    Damage of woven composite under tensile and shear stress using infrared thermography and micrographic cuts

    Get PDF
    Infrared thermography was used to study damage developing in woven fabrics. Two different experiments were performed, a ±45° tensile test and a rail shear test. These two different types of tests show different damage scenarios, even if the shear stress/strain curves are similar. The ±45° tension test shows matrix hardening and matrix cracking whereas the rail shear test shows only matrix hardening. The infrared thermography was used to perform an energy balance, which enabled the visualization of the portion of dissipated energy caused by matrix cracking. The results showed that when the resin is subjected to pure shear, a larger amount of energy is stored by the material, whereas when the resin is subjected to hydrostatic pressure, the main part of mechanical energy is dissipated as heat

    A Long Baseline Neutrino Oscillation Experiment Using J-PARC Neutrino Beam and Hyper-Kamiokande

    Get PDF
    Document submitted to 18th J-PARC PAC meeting in May 2014. 50 pages, 41 figuresDocument submitted to 18th J-PARC PAC meeting in May 2014. 50 pages, 41 figuresDocument submitted to 18th J-PARC PAC meeting in May 2014. 50 pages, 41 figuresHyper-Kamiokande will be a next generation underground water Cherenkov detector with a total (fiducial) mass of 0.99 (0.56) million metric tons, approximately 20 (25) times larger than that of Super-Kamiokande. One of the main goals of Hyper-Kamiokande is the study of CPCP asymmetry in the lepton sector using accelerator neutrino and anti-neutrino beams. In this document, the physics potential of a long baseline neutrino experiment using the Hyper-Kamiokande detector and a neutrino beam from the J-PARC proton synchrotron is presented. The analysis has been updated from the previous Letter of Intent [K. Abe et al., arXiv:1109.3262 [hep-ex]], based on the experience gained from the ongoing T2K experiment. With a total exposure of 7.5 MW ×\times 107^7 sec integrated proton beam power (corresponding to 1.56×10221.56\times10^{22} protons on target with a 30 GeV proton beam) to a 2.52.5-degree off-axis neutrino beam produced by the J-PARC proton synchrotron, it is expected that the CPCP phase δCP\delta_{CP} can be determined to better than 19 degrees for all possible values of δCP\delta_{CP}, and CPCP violation can be established with a statistical significance of more than 3σ3\,\sigma (5σ5\,\sigma) for 7676% (5858%) of the δCP\delta_{CP} parameter space

    Sodium channel slow inactivation interferes with open channel block

    Get PDF
    Mutations in the voltage-gated sodium channel Nav1.7 are linked to inherited pain syndromes such as erythromelalgia (IEM) and paroxysmal extreme pain disorder (PEPD). PEPD mutations impair Nav1.7 fast inactivation and increase persistent currents. PEPD mutations also increase resurgent currents, which involve the voltage-dependent release of an open channel blocker. In contrast, IEM mutations, whenever tested, leave resurgent currents unchanged. Accordingly, the IEM deletion mutation L955 (ΔL955) fails to produce resurgent currents despite enhanced persistent currents, which have hitherto been considered a prerequisite for resurgent currents. Additionally, ΔL955 exhibits a prominent enhancement of slow inactivation (SI). We introduced mutations into Nav1.7 and Nav1.6 that either enhance or impair SI in order to investigate their effects on resurgent currents. Our results show that enhanced SI is accompanied by impaired resurgent currents, which suggests that SI may interfere with open-channel block

    Search for rare quark-annihilation decays, B --> Ds(*) Phi

    Full text link
    We report on searches for B- --> Ds- Phi and B- --> Ds*- Phi. In the context of the Standard Model, these decays are expected to be highly suppressed since they proceed through annihilation of the b and u-bar quarks in the B- meson. Our results are based on 234 million Upsilon(4S) --> B Bbar decays collected with the BABAR detector at SLAC. We find no evidence for these decays, and we set Bayesian 90% confidence level upper limits on the branching fractions BF(B- --> Ds- Phi) Ds*- Phi)<1.2x10^(-5). These results are consistent with Standard Model expectations.Comment: 8 pages, 3 postscript figues, submitted to Phys. Rev. D (Rapid Communications

    Sensitivity of the T2K accelerator-based neutrino experiment with an Extended run to 20×102120\times10^{21} POT

    Get PDF
    18 pages, 4 figures18 pages, 4 figures18 pages, 4 figures18 pages, 4 figures18 pages, 4 figuresRecent measurements at the T2K experiment indicate that CP violation in neutrino mixing may be observed in the future by long-baseline neutrino oscillation experiments. We explore the physics program of an extension to the currently approved T2K running of 7.8×10217.8\times 10^{21} protons-on-target to 20×102120\times 10^{21} protons-on-target,aiming at initial observation of CP violation with 3σ\,\sigma or higher significance for the case of maximum CP violation. With accelerator and beam line upgrades, as well as analysis improvements, this program would occur before the next generation of long-baseline neutrino oscillation experiments that are expected to start operation in 2026.We acknowledge the support of MEXT, Japan; NSERC (Grant No. SAPPJ-2014-00031), NRC and CFI, Canada; CEA and CNRS/IN2P3, France; DFG, Germany; INFN, Italy; National Science Centre (NCN), Poland; RSF, RFBR and MES, Russia; MINECO and ERDF funds, Spain; SNSF and SERI, Switzerland; STFC, UK; and DOE, USA. We also thank CERN for the UA1/NOMAD magnet, DESY for the HERA-B magnet mover system, NII for SINET4, the WestGrid and SciNet consortia in Compute Canada, and GridPP in the United Kingdom. In addition, participation of individual researchers and institutions has been further supported by funds from ERC (FP7), H2020 Grant No. RISE-GA644294-JENNIFER, EU; JSPS, Japan; Royal Society, UK; and the DOE Early Career program, USA. CNRS/IN2P3: Centre National de la Recherche ScientifiqueInstitut National de Physique Nucleaire et de Physique des Particules RSF: Russian Science Foundation MES: Ministry of Education and Science, Russia ERDF: European Regional Development Fund SNSF: Swiss National Science Foundation SER (should be SERI): State Secretariat for Education, Research and Innovatio

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Physics Potentials with the Second Hyper-Kamiokande Detector in Korea

    Get PDF
    We have conducted sensitivity studies on an alternative configuration of the Hyper-Kamiokande experiment by locating the 2nd Hyper-Kamiokande detector in Korea at \sim1100 -\ 1300 km baseline. Having two detectors at different baselines improves sensitivity to leptonic CP violation, neutrino mass ordering as well as nonstandard neutrino interactions. There are several candidate sites in Korea with greater than 1 km high mountains ranged at an 1-3 degree off-axis angle. Thanks to larger overburden of the candidate sites in Korea, low energy physics, such as solar and supernova neutrino physics as well as dark matter search, is expected to be improved. In this paper sensitivity studies on the CP violation phase and neutrino mass ordering are performed using current T2K systematic uncertainties in most cases. We plan to improve our sensitivity studies in the near future with better estimation of our systematic uncertainties

    The Future of Biologic Agents in the Treatment of Sjögren’s Syndrome

    Get PDF
    The gain in knowledge regarding the cellular mechanisms of T and B lymphocyte activity in the pathogenesis of Sjögren’s syndrome (SS) and the current availability of various biological agents (anti-TNF-α, IFN- α, anti-CD20, and anti-CD22) have resulted in new strategies for therapeutic intervention. In SS, various phase I and II studies have been performed to evaluate these new strategies. Currently, B cell-directed therapies seem to be more promising than T cell-related therapies. However, large, randomized, placebo-controlled clinical trials are needed to confirm the promising results of these early studies. When performing these trials, special attention has to be paid to prevent the occasional occurrence of the severe side effects

    First Measurement of the Muon Neutrino Charged Current Single Pion Production Cross Section on Water with the T2K Near Detector

    Get PDF
    The T2K off-axis near detector, ND280, is used to make the first differential cross section measurements of muon neutrino charged current single positive pion production on a water target at energies 0.8{\sim}0.8 GeV. The differential measurements are presented as a function of muon and pion kinematics, in the restricted phase-space defined by pπ+>200p_{\pi^+}>200MeV/c, pμ>200p_{\mu^-}>200MeV/c, cosθπ+>0.3\cos \theta_{\pi^+}>0.3 and cosθμ>0.3\cos \theta_{\mu^-}>0.3. The total flux integrated νμ\nu_\mu charged current single positive pion production cross section on water in the restricted phase-space is measured to be σϕ=4.25±0.48(stat)±1.56(syst)×1040cm2/nucleon\langle\sigma\rangle_\phi=4.25\pm0.48 (\mathrm{stat})\pm1.56 (\mathrm{syst})\times10^{-40} \mathrm{cm}^{2}/\mathrm{nucleon}. The total cross section is consistent with the NEUT prediction (5.03×1040cm2/nucleon5.03\times10^{-40} \mathrm{cm}^{2}/\mathrm{nucleon}) and 2σ\sigma lower than the GENIE prediction (7.68×1040cm2/nucleon7.68\times10^{-40} \mathrm{cm}^{2}/\mathrm{nucleon}). The differential cross sections are in good agreement with the NEUT generator. The GENIE simulation reproduces well the shapes of the distributions, but over-estimates the overall cross section normalization

    Extended fine structure and continuum emission from S140/L1204

    Get PDF
    Grating spectra, covering the wavelength range 45 to 187μm have been taken with the ISO Long Wavelength Spectrometer (LWS) at a series of pointing positions over the S 140 region, centred on the cluster of embedded young stellar objects at the south-west corner of the L1204 molecular cloud. Extended emission from [CII]158μm and [OI]63μm is seen, peaking near the position of the embedded stars. The measurements of the fine structure lines are interpreted in terms of PDR models for the emission, as well as the underlying thermal continuum for the heated gas and dust
    corecore