142 research outputs found

    Refinement and Pattern Formation in Neural Circuits by the Interaction of Traveling Waves with Spike-Timing Dependent Plasticity

    Get PDF
    Traveling waves in the developing brain are a prominent source of highly correlated spiking activity that may instruct the refinement of neural circuits. A candidate mechanism for mediating such refinement is spike-timing dependent plasticity (STDP), which translates correlated activity patterns into changes in synaptic strength. To assess the potential of these phenomena to build useful structure in developing neural circuits, we examined the interaction of wave activity with STDP rules in simple, biologically plausible models of spiking neurons. We derive an expression for the synaptic strength dynamics showing that, by mapping the time dependence of STDP into spatial interactions, traveling waves can build periodic synaptic connectivity patterns into feedforward circuits with a broad class of experimentally observed STDP rules. The spatial scale of the connectivity patterns increases with wave speed and STDP time constants. We verify these results with simulations and demonstrate their robustness to likely sources of noise. We show how this pattern formation ability, which is analogous to solutions of reaction-diffusion systems that have been widely applied to biological pattern formation, can be harnessed to instruct the refinement of postsynaptic receptive fields. Our results hold for rich, complex wave patterns in two dimensions and over several orders of magnitude in wave speeds and STDP time constants, and they provide predictions that can be tested under existing experimental paradigms. Our model generalizes across brain areas and STDP rules, allowing broad application to the ubiquitous occurrence of traveling waves and to wave-like activity patterns induced by moving stimuli

    Strengthening fairness, transparency and accountability in health care priority setting at district level in Tanzania

    Get PDF
    Health care systems are faced with the challenge of resource scarcity and have insufficient resources to respond to all health problems and target groups simultaneously. Hence, priority setting is an inevitable aspect of every health system. However, priority setting is complex and difficult because the process is frequently influenced by political, institutional and managerial factors that are not considered by conventional priority-setting tools. In a five-year EU-supported project, which started in 2006, ways of strengthening fairness and accountability in priority setting in district health management were studied. This review is based on a PhD thesis that aimed to analyse health care organisation and management systems, and explore the potential and challenges of implementing Accountability for Reasonableness (A4R) approach to priority setting in Tanzania. A qualitative case study in Mbarali district formed the basis of exploring the sociopolitical and institutional contexts within which health care decision making takes place. The study also explores how the A4R intervention was shaped, enabled and constrained by the contexts. Key informant interviews were conducted. Relevant documents were also gathered and group priority-setting processes in the district were observed. The study revealed that, despite the obvious national rhetoric on decentralisation, actual practice in the district involved little community participation. The assumption that devolution to local government promotes transparency, accountability and community participation, is far from reality. The study also found that while the A4R approach was perceived to be helpful in strengthening transparency, accountability and stakeholder engagement, integrating the innovation into the district health system was challenging. This study underscores the idea that greater involvement and accountability among local actors may increase the legitimacy and fairness of priority-setting decisions. A broader and more detailed analysis of health system elements, and socio-cultural context is imperative in fostering sustainability. Additionally, the study stresses the need to deal with power asymmetries among various actors in priority-setting contexts

    Strategic treatment optimization for HCV (STOPHCV1): a randomised controlled trial of ultrashort duration therapy for chronic hepatitis C [version 1; peer review: awaiting peer review]

    Get PDF
    Background: The world health organization (WHO) has identified the need for a better understanding of which patients with hepatitis C virus (HCV) can be cured with ultrashort course HCV therapy. Methods: A total of 202 individuals with chronic HCV were randomised to fixed-duration shortened therapy (8 weeks) vs variable duration ultrashort strategies (VUS1/2). Participants not cured following first-line treatment were retreated with 12 weeks’ sofosbuvir/ledipasvir/ribavirin. The primary outcome was sustained virological response 12 weeks (SVR12) after first-line treatment and retreatment. Participants were factorially randomised to receive ribavirin with first-line treatment. Results: All evaluable participants achieved SVR12 overall (197/197, 100% [95% CI 98-100]) demonstrating non-inferiority between fixedduration and variable-duration strategies (difference 0% [95% CI - 3.8%, +3.7%], 4% pre-specified non-inferiority margin). First-line SVR12 was 91% [86%-97%] (92/101) for fixed-duration vs 48% [39%-57%] (47/98) for variable-duration, but was significantly higher for VUS2 (72% [56%-87%] (23/32)) than VUS1 (36% [25%-48%] (24/66)). Overall, first-line SVR12 was 72% [65%-78%] (70/101) without ribavirin and 68% [61%-76%] (69/98) with ribavirin (p=0.48). At treatment failure, the emergence of viral resistance was lower with ribavirin (12% [2%-30%] (3/26)) than without (38% [21%-58%] (11/29), p=0.01). Conclusions: Unsuccessful first-line short-course therapy did not compromise retreatment with sofosbuvir/ledipasvir/ribavirin (100% SVR12). SVR12 rates were significantly increased when ultrashort treatment varied between 4-7 weeks rather than 4-6 weeks. Ribavirin significantly reduced resistance emergence in those failing first-line therapy. ISRCTN Registration: 37915093 (11/04/2016)

    Variable short duration treatment versus standard treatment, with and without adjunctive ribavirin, for chronic hepatitis C: the STOP-HCV-1 non-inferiority, factorial RCT

    Get PDF
    Background: High cure rates with licensed durations of therapy for chronic hepatitis C virus suggest that many patients are overtreated. New strategies in individuals who find it challenging to adhere to standard treatment courses could significantly contribute to the elimination agenda. Objectives: To compare cure rates using variable ultrashort first-line treatment stratified by baseline viral load followed by retreatment, with a fixed 8-week first-line treatment with retreatment with or without adjunctive ribavirin. Design: An open-label, multicentre, factorial randomised controlled trial. Randomisation: Randomisation was computer generated, with patients allocated in a 1 : 1 ratio using a factorial design to each of biomarker-stratified variable ultrashort strategy or fixed duration and adjunctive ribavirin (or not), using a minimisation algorithm with a probabilistic element. Setting: NHS. Participants: A total of 202 adults (aged ≥ 18 years) infected with chronic hepatitis C virus genotype 1a/1b or 4 for ≥ 6 months, with a detectable plasma hepatitis C viral load and no significant fibrosis [FibroScan® (Echosens, Paris, France) score F0–F1 or biopsy-proven minimal fibrosis], a hepatitis C virus viral load  24 weeks on anti-human immunodeficiency virus drugs. Interventions: Fixed-duration 8-week first-line therapy compared with variable ultrashort first-line therapy, initially for 4–6 weeks (continuous scale) stratified by screening viral load (variable ultrashort strategy 1, mean 32 days of treatment) and then, subsequently, for 4–7 weeks (variable ultrashort strategy 2 mean 39 days of duration), predominantly with ombitasvir, paritaprevir, ritonavir (Viekirax®; AbbVie, Chicago, IL, USA), and dasabuvir (Exviera®; AbbVie, Chicago, IL, USA) or ritonavir. All patients in whom first-line treatment was unsuccessful were immediately retreated with 12 weeks’ sofosbuvir, ledipasvir (Harvoni®, Gilead Sciences, Inc., Foster City, CA, USA) and ribavirin. Main outcome measure: The primary outcome was overall sustained virological response (persistently undetectable) 12 weeks after the end of therapy (SVR12). Results: A total of 202 patients were analysed. All patients in whom the primary outcome was evaluable achieved SVR12 overall [100% (197/197), 95% confidence interval 86% to 100%], demonstrating non-inferiority between fixed- and variable-duration strategies (difference 0%, 95% confidence interval –3.8% to 3.7%, prespecified non-inferiority margin 4%). A SVR12 following first-line treatment was achieved in 91% (92/101; 95% confidence interval 86% to 97%) of participants randomised to the fixed-duration strategy and by 48% (47/98; 95% confidence interval 39% to 57%) allocated to the variable-duration strategy. However, the proportion achieving SVR12 was significantly higher among those allocated to variable ultrashort strategy 2 [72% (23/32), 95% confidence interval 56% to 87%] than among those allocated to variable ultrashort strategy 1 [36% (24/66), 95% confidence interval 25% to 48%]. Overall, a SVR12 following first-line treatment was achieved by 72% (70/101) (95% confidence interval 65% to 78%) of patients treated with ribavirin and by 68% (69/98) (95% confidence interval 61% to 76%) of those not treated with ribavirin. A SVR12 with variable ultrashort strategies 1 and 2 was 52% (25/48) (95% confidence interval 38% to 65%) with ribavirin, compared with 44% (22/50) (95% confidence interval 31% to 56) without. However, at treatment failure, the emergence of viral resistance was lower with ribavirin [12% (3/26), 95% confidence interval 2% to 30%] than without [38% (11/29), 95% confidence interval 21% to 58%; p = 0.01]. All 10 individuals who became undetectable at day 3 of treatment achieved first-line SVR12 regardless of treatment duration. Five participants in the variable-duration arm and five in the fixed-duration arm experienced serious adverse events (p = 0.69), as did five participants receiving ribavirin and five participants receiving no ribavirin. Conclusions: SVR12 rates were significantly higher when ultrashort treatment varied between 4 and 7 weeks, rather than between 4 and 6 weeks. We found no evidence of ribavirin significantly affecting first-line SVR12, with unsuccessful first-line short-course therapy also not compromising subsequent retreatment with sofosbuvir, ledipasvir and ribavirin

    Immune Reconstitution During the First Year of Antiretroviral Therapy of HIV-1-Infected Adults in Rural Burkina Faso

    Get PDF
    There are no data on the outcome of highly active antiretroviral therapy (HAART) in HIV-infected adults in rural Burkina Faso. We therefore assessed CD4+ T-cell counts and HIV-1 plasma viral load (VL), the proportion of naive T-cells (co-expressing CCR7 and CD45RA) and T-cell activation (expression of CD95 or CD38) in 61 previously untreated adult patients from Nouna, Burkina Faso, at baseline and 2 weeks, 1, 3, 6, 9 and 12 months after starting therapy. Median CD4+ T-cell counts increased from 174 (10th-90th percentile: 33-314) cells/µl at baseline to 300 (114- 505) cells/µl after 3 months and 360 (169-562) cells/µl after 12 months of HAART. Median VL decreased from 5.8 (4.6- 6.6) log10 copies/ml at baseline to 1.6 (1.6-2.3) log10 copies/ml after 12 months. Early CD4+ T-cell recovery was accompanied by a reduction of the expression levels of CD95 and CD38 on T-cells. Out of 42 patients with complete virological follow-up under HAART, 19 (45%) achieved concordant good immunological (gain of ≥100 CD4+ T-cells/µl above baseline) and virological (undetectable VL) responses after 12 months of treatment (intention-to-treat analysis). Neither a decreased expression of the T-cell activation markers CD38 and CD95, nor an increase in the percentage of naive T-cells reliably predicted good virological treatment responses in patients with good CD4+ T-cell reconstitution. Repeated measurement of CD4+ T-cell counts during HAART remains the most important parameter for immunologic monitoring. Substitution of repeated VL testing by determination of T-cell activation levels (e.g., CD38 expression on CD8+ T-cells) should be applied with caution

    Broadening the horizon – level 2.5 of the HUPO-PSI format for molecular interactions

    Get PDF
    BACKGROUND: Molecular interaction Information is a key resource in modern biomedical research. Publicly available data have previously been provided in a broad array of diverse formats, making access to this very difficult. The publication and wide implementation of the Human Proteome Organisation Proteomics Standards Initiative Molecular Interactions (HUPO PSI-MI) format in 2004 was a major step towards the establishment of a single, unified format by which molecular interactions should be presented, but focused purely on protein-protein interactions. RESULTS: The HUPO-PSI has further developed the PSI-MI XML schema to enable the description of interactions between a wider range of molecular types, for example nucleic acids, chemical entities, and molecular complexes. Extensive details about each supported molecular interaction can now be captured, including the biological role of each molecule within that interaction, detailed description of interacting domains, and the kinetic parameters of the interaction. The format is supported by data management and analysis tools and has been adopted by major interaction data providers. Additionally, a simpler, tab-delimited format MITAB2.5 has been developed for the benefit of users who require only minimal information in an easy to access configuration. CONCLUSION: The PSI-MI XML2.5 and MITAB2.5 formats have been jointly developed by interaction data producers and providers from both the academic and commercial sector, and are already widely implemented and well supported by an active development community. PSI-MI XML2.5 enables the description of highly detailed molecular interaction data and facilitates data exchange between databases and users without loss of information. MITAB2.5 is a simpler format appropriate for fast Perl parsing or loading into Microsoft Excel

    The antibody response to Plasmodium falciparum Merozoite Surface Protein 4: comparative assessment of specificity and growth inhibitory antibody activity to infection-acquired and immunization-induced epitopes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Malaria remains a global public health challenge. It is widely believed that an effective vaccine against malaria will need to incorporate multiple antigens from the various stages of the parasite's complex life cycle. <it>Plasmodium falciparum </it>Merozoite Surface Protein 4 (MSP4) is a vaccine candidate that has been selected for development for inclusion in an asexual stage subunit vaccine against malaria.</p> <p>Methods</p> <p>Nine monoclonal antibodies (Mabs) were produced against <it>Escherichia coli</it>-expressed recombinant MSP4 protein and characterized. These Mabs were used to develop an MSP4-specific competition ELISA to test the binding specificity of antibodies present in sera from naturally <it>P. falciparum</it>-infected individuals from a malaria endemic region of Vietnam. The Mabs were also tested for their capacity to induce <it>P. falciparum </it>growth inhibition <it>in vitro </it>and compared against polyclonal rabbit serum raised against recombinant MSP4</p> <p>Results</p> <p>All Mabs reacted with native parasite protein and collectively recognized at least six epitopes. Four of these Mabs recognize reduction-sensitive epitopes within the epidermal growth factor-like domain found near the C-terminus of MSP4. These sera were shown to contain antibodies capable of inhibiting the binding of the six Mabs indicating infection-acquired responses to the six different epitopes of MSP4. All of the six epitopes were readily recognized by human immune sera. Competition ELISA titres varied from 20 to 640, reflecting heterogeneity in the intensity of the humoral response against the protein among different individuals. The IgG responses during acute and convalescent phases of infection were higher to epitopes in the central region than to other parts of MSP4. Immunization with full length MSP4 in Freund's adjuvant induced rabbit polyclonal antisera able to inhibit parasite growth <it>in vitro </it>in a manner proportionate to the antibody titre. By contrast, polyclonal antisera raised to individual recombinant fragments rMSP4A, rMSP4B, rMSP4C and rMSP4D gave negligible inhibition. Similarly, murine Mabs alone or in combination did not inhibit parasite growth.</p> <p>Conclusions</p> <p>The panel of MSP4-specific Mabs produced were found to recognize six distinct epitopes that are also targeted by human antibodies during natural malaria infection. Antibodies directed to more than three epitope regions spread across MSP4 are likely to be required for <it>P. falciparum </it>growth inhibition <it>in vitro</it>.</p

    Evolutionary Convergence on Highly-Conserved 3′ Intron Structures in Intron-Poor Eukaryotes and Insights into the Ancestral Eukaryotic Genome

    Get PDF
    The presence of spliceosomal introns in eukaryotes raises a range of questions about genomic evolution. Along with the fundamental mysteries of introns' initial proliferation and persistence, the evolutionary forces acting on intron sequences remain largely mysterious. Intron number varies across species from a few introns per genome to several introns per gene, and the elements of intron sequences directly implicated in splicing vary from degenerate to strict consensus motifs. We report a 50-species comparative genomic study of intron sequences across most eukaryotic groups. We find two broad and striking patterns. First, we find that some highly intron-poor lineages have undergone evolutionary convergence to strong 3′ consensus intron structures. This finding holds for both branch point sequence and distance between the branch point and the 3′ splice site. Interestingly, this difference appears to exist within the genomes of green alga of the genus Ostreococcus, which exhibit highly constrained intron sequences through most of the intron-poor genome, but not in one much more intron-dense genomic region. Second, we find evidence that ancestral genomes contained highly variable branch point sequences, similar to more complex modern intron-rich eukaryotic lineages. In addition, ancestral structures are likely to have included polyT tails similar to those in metazoans and plants, which we found in a variety of protist lineages. Intriguingly, intron structure evolution appears to be quite different across lineages experiencing different types of genome reduction: whereas lineages with very few introns tend towards highly regular intronic sequences, lineages with very short introns tend towards highly degenerate sequences. Together, these results attest to the complex nature of ancestral eukaryotic splicing, the qualitatively different evolutionary forces acting on intron structures across modern lineages, and the impressive evolutionary malleability of eukaryotic gene structures

    Functional Analysis of the Leading Malaria Vaccine Candidate AMA-1 Reveals an Essential Role for the Cytoplasmic Domain in the Invasion Process

    Get PDF
    A key process in the lifecycle of the malaria parasite Plasmodium falciparum is the fast invasion of human erythrocytes. Entry into the host cell requires the apical membrane antigen 1 (AMA-1), a type I transmembrane protein located in the micronemes of the merozoite. Although AMA-1 is evolving into the leading blood-stage malaria vaccine candidate, its precise role in invasion is still unclear. We investigate AMA-1 function using live video microscopy in the absence and presence of an AMA-1 inhibitory peptide. This data reveals a crucial function of AMA-1 during the primary contact period upstream of the entry process at around the time of moving junction formation. We generate a Plasmodium falciparum cell line that expresses a functional GFP-tagged AMA-1. This allows the visualization of the dynamics of AMA-1 in live parasites. We functionally validate the ectopically expressed AMA-1 by establishing a complementation assay based on strain-specific inhibition. This method provides the basis for the functional analysis of essential genes that are refractory to any genetic manipulation. Using the complementation assay, we show that the cytoplasmic domain of AMA-1 is not required for correct trafficking and surface translocation but is essential for AMA-1 function. Although this function can be mimicked by the highly conserved cytoplasmic domains of P. vivax and P. berghei, the exchange with the heterologous domain of the microneme protein EBA-175 or the rhoptry protein Rh2b leads to a loss of function. We identify several residues in the cytoplasmic tail that are essential for AMA-1 function. We validate this data using additional transgenic parasite lines expressing AMA-1 mutants with TY1 epitopes. We show that the cytoplasmic domain of AMA-1 is phosphorylated. Mutational analysis suggests an important role for the phosphorylation in the invasion process, which might translate into novel therapeutic strategies

    A Phase 1 Trial of MSP2-C1, a Blood-Stage Malaria Vaccine Containing 2 Isoforms of MSP2 Formulated with Montanide® ISA 720

    Get PDF
    Background: In a previous Phase 1/2b malaria vaccine trial testing the 3D7 isoform of the malaria vaccine candidate Merozoite surface protein 2 (MSP2), parasite densities in children were reduced by 62%. However, breakthrough parasitemias were disproportionately of the alternate dimorphic form of MSP2, the FC27 genotype. We therefore undertook a dose-escalating, double-blinded, placebo-controlled Phase 1 trial in healthy, malaria-naïve adults of MSP2-C1, a vaccine containing recombinant forms of the two families of msp2 alleles, 3D7 and FC27 (EcMSP2-3D7 and EcMSP2-FC27), formulated in equal amounts with Montanide® ISA 720 as a water-in-oil emulsion. Methodology/Principal Findings: The trial was designed to include three dose cohorts (10, 40, and 80 μg), each with twelve subjects receiving the vaccine and three control subjects receiving Montanide® ISA 720 adjuvant emulsion alone, in a schedule of three doses at 12-week intervals. Due to unexpected local reactogenicity and concern regarding vaccine stability, the trial was terminated after the second immunisation of the cohort receiving the 40 μg dose; no subjects received the 80 μg dose. Immunization induced significant IgG responses to both isoforms of MSP2 in the 10 μg and 40 μg dose cohorts, with antibody levels by ELISA higher in the 40 μg cohort. Vaccine-induced antibodies recognised native protein by Western blots of parasite protein extracts and by immunofluorescence microscopy. Although the induced anti-MSP2 antibodies did not directly inhibit parasite growth in vitro, IgG from the majority of individuals tested caused significant antibody-dependent cellular inhibition (ADCI) of parasite growth. Conclusions/Significance: As the majority of subjects vaccinated with MSP2-C1 developed an antibody responses to both forms of MSP2, and that these antibodies mediated ADCI provide further support for MSP2 as a malaria vaccine candidate. However, in view of the reactogenicity of this formulation, further clinical development of MSP2-C1 will require formulation of MSP2 in an alternative adjuvant. Trial Registration: Australian New Zealand Clinical Trials Registry 12607000552482
    corecore