183 research outputs found

    A simple genetic algorithm for calibration of stochastic rock discontinuity networks

    Get PDF
    Este artículo propone un método para llevar a cabo la calibración de las familias de discontinuidades en macizos rocosos. We present a novel approach for calibration of stochastic discontinuity network parameters based on genetic algorithms (GAs). To validate the approach, examples of application of the method to cases with known parameters of the original Poisson discontinuity network are presented. Parameters of the model are encoded as chromosomes using a binary representation, and such chromosomes evolve as successive generations of a randomly generated initial population, subjected to GA operations of selection, crossover and mutation. Such back-calculated parameters are employed to make assessments about the inference capabilities of the model using different objective functions with different probabilities of crossover and mutation. Results show that the predictive capabilities of GAs significantly depend on the type of objective function considered; and they also show that the calibration capabilities of the genetic algorithm can be acceptable for practical engineering applications, since in most cases they can be expected to provide parameter estimates with relatively small errors for those parameters of the network (such as intensity and mean size of discontinuities) that have the strongest influence on many engineering applications

    Satellite Observations of Separator Line Geometry of Three-Dimensional Magnetic Reconnection

    Full text link
    Detection of a separator line that connects magnetic nulls and the determination of the dynamics and plasma environment of such a structure can improve our understanding of the three-dimensional (3D) magnetic reconnection process. However, this type of field and particle configuration has not been directly observed in space plasmas. Here we report the identification of a pair of nulls, the null-null line that connects them, and associated fans and spines in the magnetotail of Earth using data from the four Cluster spacecraft. With di and de designating the ion and electron inertial lengths, respectively, the separation between the nulls is found to be ~0.7di and an associated oscillation is identified as a lower hybrid wave with wavelength ~ de. This in situ evidence of the full 3D reconnection geometry and associated dynamics provides an important step toward to establishing an observational framework of 3D reconnection.Comment: 10 pages, 3 figures and 1 tabl

    New discoveries in the transmission biology of sleeping sickness parasites: applying the basics

    Get PDF
    The sleeping sickness parasite, Trypanosoma brucei, must differentiate in response to the changing environments that it encounters during its complex life cycle. One developmental form, the bloodstream stumpy stage, plays an important role in infection dynamics and transmission of the parasite. Recent advances have shed light on the molecular mechanisms by which these stumpy forms differentiate as they are transmitted from the mammalian host to the insect vector of sleeping sickness, tsetse flies. These molecular advances now provide improved experimental tools for the study of stumpy formation and function within the mammalian bloodstream. They also offer new routes to therapy via high-throughput screens for agents that accelerate parasite development. Here, we shall discuss the recent advances that have been made and the prospects for future research now available

    Antisense-Mediated Knockdown of NaV1.8, but Not NaV1.9, Generates Inhibitory Effects on Complete Freund's Adjuvant-Induced Inflammatory Pain in Rat

    Get PDF
    Tetrodotoxin-resistant (TTX-R) sodium channels NaV1.8 and NaV1.9 in sensory neurons were known as key pain modulators. Comparing with the widely reported NaV1.8, roles of NaV1.9 on inflammatory pain are poorly studied by antisense-induced specific gene knockdown. Here, we used molecular, electrophysiological and behavioral methods to examine the effects of antisense oligodeoxynucleotide (AS ODN) targeting NaV1.8 and NaV1.9 on inflammatory pain. Following complete Freund's adjuvant (CFA) inflammation treatment, NaV1.8 and NaV1.9 in rat dorsal root ganglion (DRG) up-regulated mRNA and protein expressions and increased sodium current densities. Immunohistochemical data demonstrated that NaV1.8 mainly localized in medium and small-sized DRG neurons, whereas NaV1.9 only expressed in small-sized DRG neurons. Intrathecal (i.t.) delivery of AS ODN was used to down-regulate NaV1.8 or NaV1.9 expressions confirmed by immunohistochemistry and western blot. Unexpectedly, behavioral tests showed that only NaV1.8 AS ODN, but not NaV1.9 AS ODN could reverse CFA-induced heat and mechanical hypersensitivity. Our data indicated that TTX-R sodium channels NaV1.8 and NaV1.9 in primary sensory neurons played distinct roles in CFA-induced inflammatory pain and suggested that antisense oligodeoxynucleotide-mediated blocking of key pain modulator might point toward a potential treatment strategy against certain types of inflammatory pain

    Painful and painless mutations of SCN9A and SCN11A voltage-gated sodium channels

    Get PDF
    Chronic pain is a global problem affecting up to 20% of the world’s population and has a significant economic, social and personal cost to society. Sensory neurons of the dorsal root ganglia (DRG) detect noxious stimuli and transmit this sensory information to regions of the central nervous system (CNS) where activity is perceived as pain. DRG neurons express multiple voltage-gated sodium channels that underlie their excitability. Research over the last 20 years has provided valuable insights into the critical roles that two channels, NaV1.7 and NaV1.9, play in pain signalling in man. Gain of function mutations in NaV1.7 cause painful conditions while loss of function mutations cause complete insensitivity to pain. Only gain of function mutations have been reported for NaV1.9. However, while most NaV1.9 mutations lead to painful conditions, a few are reported to cause insensitivity to pain. The critical roles these channels play in pain along with their low expression in the CNS and heart muscle suggest they are valid targets for novel analgesic drugs

    From staff-mix to skill-mix and beyond: towards a systemic approach to health workforce management

    Get PDF
    Throughout the world, countries are experiencing shortages of health care workers. Policy-makers and system managers have developed a range of methods and initiatives to optimise the available workforce and achieve the right number and mix of personnel needed to provide high-quality care. Our literature review found that such initiatives often focus more on staff types than on staff members' skills and the effective use of those skills. Our review describes evidence about the benefits and pitfalls of current approaches to human resources optimisation in health care. We conclude that in order to use human resources most effectively, health care organisations must consider a more systemic approach - one that accounts for factors beyond narrowly defined human resources management practices and includes organisational and institutional conditions

    Automatic Mapping of Discontinuity Persistence on Rock Masses Using 3D Point Clouds

    Get PDF
    Finding new ways to quantify discontinuity persistence values in rock masses in an automatic or semi-automatic manner is a considerable challenge, as an alternative to the use of traditional methods based on measuring patches or traces with tapes. Remote sensing techniques potentially provide new ways of analysing visible data from the rock mass. This work presents a methodology for the automatic mapping of discontinuity persistence on rock masses, using 3D point clouds. The method proposed herein starts by clustering points that belong to patches of a given discontinuity. Coplanar clusters are then merged into a single group of points. Persistence is measured in the directions of the dip and strike for each coplanar set of points, resulting in the extraction of the length of the maximum chord and the area of the convex hull. The proposed approach is implemented in a graphic interface with open source software. Three case studies are utilized to illustrate the methodology: (1) small-scale laboratory setup consisting of a regular distribution of cubes with similar dimensions, (2) more complex geometry consisting of a real rock mass surface in an excavated cavern and (3) slope with persistent sub-vertical discontinuities. Results presented good agreement with field measurements, validating the methodology. Complexities and difficulties related to the method (e.g. natural discontinuity waviness) are reported and discussed. An assessment on the applicability of the method to the 3D point cloud is also presented. Utilization of remote sensing data for a more objective characterization of the persistence of planar discontinuities affecting rock masses is highlighted herein

    Regulation of Trypanosoma brucei Total and Polysomal mRNA during Development within Its Mammalian Host

    Get PDF
    This work was supported by a Wellcome Trust Programme grant to KM and by a Wellcome Trust Strategic award to the Centre for Immunity, Infection and Evolution at the University of Edinburgh. SM was supported by a studentship from the Medical Research Council, UK.The gene expression of Trypanosoma brucei has been examined extensively in the blood of mammalian hosts and in forms found in the midgut of its arthropod vector, the tsetse fly. However, trypanosomes also undergo development within the mammalian bloodstream as they progress from morphologically 'slender forms' to transmissible 'stumpy forms' through morphological intermediates. This transition is temporally progressive within the first wave of parasitaemia such that gene expression can be monitored in relatively pure slender and stumpy populations as well as during the progression between these extremes. The development also represents the progression of cells from translationally active forms adapted for proliferation in the host to translationally quiescent forms, adapted for transmission. We have used metabolic labelling to quantitate translational activity in slender forms, stumpy forms and in forms undergoing early differentiation to procyclic forms in vitro. Thereafter we have examined the cohort of total mRNAs that are enriched throughout development in the mammalian bloodstream (slender, intermediate and stumpy forms), irrespective of strain, revealing those that exhibit consistent developmental regulation rather than sample specific changes. Transcripts that cosediment with polysomes in stumpy forms and slender forms have also been enriched to identify transcripts that escape translational repression prior to transmission. Combined, the expression and polysomal association of transcripts as trypanosomes undergo development in the mammalian bloodstream have been defined, providing a resource for trypanosome researchers. This facilitates the identification of those that undergo developmental regulation in the bloodstream and therefore those likely to have a role in the survival and capacity for transmission of stumpy forms.Publisher PDFPeer reviewe
    corecore