20 research outputs found
Biofilter aquaponic system for nutrients removal from fresh market wastewater
Aquaponics is a significant wastewater treatment system which refers to the combination of conventional aquaculture (raising aquatic organism) with hydroponics (cultivating plants in water) in a symbiotic environment. This system has a high ability in removing nutrients compared to conventional methods because it is a natural and environmentally friendly system (aquaponics). The current chapter aimed to review the possible application of aquaponics system to treat fresh market wastewater with the intention to highlight the mechanism of phytoremediation occurs in aquaponic system. The literature revealed that aquaponic system was able to remove nutrients in terms of nitrogen and phosphorus
Soil Inorganic N Leaching in Edges of Different Forest Types Subject to High N Deposition Loads
Plasticity in nitrogen form uptake and preference in response to long-term nitrogen fertilization
Development, standardization and testing of a bacterial wound infection model based on ex vivo human skin
Current research on wound infections is primarily conducted on animal models, which limits direct transferability of these studies to humans. Some of these limitations can be overcome by using–otherwise discarded—skin from cosmetic surgeries. Superficial wounds are induced in fresh ex vivo skin, followed by intradermal injection of Pseudomonas aeruginosa under the wound. Subsequently, the infected skin is incubated for 20 hours at 37°C and the CFU/wound are determined. Within 20 hours, the bacteria count increased from 107 to 109 bacteria per wound, while microscopy revealed a dense bacterial community in the collagen network of the upper wound layers as well as numerous bacteria scattered in the dermis. At the same time, IL-1alpha and IL-1beta amounts increased in all infected wounds, while—due to bacteria-induced cell lysis—the IL-6 and IL-8 concentrations rose only in the uninfected samples. High-dosage ciprofloxacin treatment resulted in a decisive decrease in bacteria, but consistently failed to eradicate all bacteria. The main benefits of the ex vivo wound model are the use of healthy human skin, a quantifiable bacterial infection, a measureable donor-dependent immune response and a good repeatability of the results. These properties turn the ex vivo wound model into a valuable tool to examine the mechanisms of host-pathogen interactions and to test antimicrobial agents
Growth and assimilation of NH4+ and NO3- by Paxillus involutus in association with Betula pendula and Picea abies as affected by substrate pH*
Development, standardization and testing of a bacterial wound infection model based on ex vivo human skin
Towards commercial aquaponics: a review of systems, designs, scales and nomenclature
Aquaponics is rapidly developing as the need for sustainable food production increases and freshwater and phosphorous reserves shrink. Starting from small-scale operations, aquaponics is at the brink of commercialization, attracting investment. Arising from integrated freshwater aquaculture, a variety of methods and system designs has developed that focus either on fish or plant production. Public interest in aquaponics has increased dramatically in recent years, in line with the trend towards more integrated value chains, greater productivity and less harmful environmental impact compared to other production systems. New business models are opening up, with new customers and markets, and with this expansion comes the potential for confusion, misunderstanding and deception. New stakeholders require guidelines and detail concerning the different system designs and their potentials. We provide a definitive definition of aquaponics, where the majority (> 50%) of nutrients sustaining the optimal plant growth derives from waste originating from feeding aquatic organisms, classify the available integrated aquaculture and aquaponics (open, domestic, demonstration, commercial) systems and designs, distinguish four different scales of production (≤ 50, > 50–≤ 100 m2, > 100–≤ 500 m2, > 500 m2) and present a definite nomenclature for aquaponics and aquaponic farming allowing distinctions between the technologies that are in use. This enables authorities, customers, producers and all other stakeholders to distinguish between the various systems, to better understand their potentials and constraints and to set priorities for business and regulations in order to transition RAS or already integrated aquaculture into commercial aquaponic systems
