251 research outputs found
Considerations Concerning the Contributions of Fundamental Particles to the Vacuum Energy Density
The covariant regularization of the contributions of fundamental particles to
the vacuum energy density is implemented in the Pauli-Villars, dimensional
regularization, and Feynman regulator frameworks. Rules of correspondence
between dimensional regularization and cutoff calculations are discussed.
Invoking the scale invariance of free field theories in the massless limit, as
well as consistency with the rules of correspondence, it is argued that quartic
divergencies are absent in the case of free fields, while it is shown that they
arise when interactions are present.Comment: 28 pages, 5 figure
On the Thermodynamics of Simple Non-Isentropic Perfect Fluids in General Relativity
We examine the consistency of the thermodynamics of irrotational and
non-isentropic perfect fluids complying with matter conservation by looking at
the integrability conditions of the Gibbs-Duhem relation. We show that the
latter is always integrable for fluids of the following types: (a) static, (b)
isentropic (admits a barotropic equation of state), (c) the source of a
spacetime for which , where is the dimension of the orbit of the
isometry group. This consistency scheme is tested also in two large classes of
known exact solutions for which , in general: perfect fluid Szekeres
solutions (classes I and II). In none of these cases, the Gibbs-Duhem relation
is integrable, in general, though specific particular cases of Szekeres class
II (all complying with ) are identified for which the integrability of
this relation can be achieved. We show that Szekeres class I solutions satisfy
the integrability conditions only in two trivial cases, namely the spherically
symmetric limiting case and the Friedman-Roberson-Walker (FRW) cosmology.
Explicit forms of the state variables and equations of state linking them are
given explicitly and discussed in relation to the FRW limits of the solutions.
We show that fixing free parameters in these solutions by a formal
identification with FRW parameters leads, in all cases examined, to unphysical
temperature evolution laws, quite unrelated to those of their FRW limiting
cosmologies.Comment: 29 pages, Plain.Te
Indirect determination of the Kugo-Ojima function from lattice data
We study the structure and non-perturbative properties of a special Green's
function, u(q), whose infrared behavior has traditionally served as the
standard criterion for the realization of the Kugo-Ojima confinement mechanism.
It turns out that, in the Landau gauge, u(q) can be determined from a dynamical
equation, whose main ingredients are the gluon propagator and the ghost
dressing function, integrated over all physical momenta. Using as input for
these two (infrared finite) quantities recent lattice data, we obtain an
indirect determination of u(q). The results of this mixed procedure are in
excellent agreement with those found previously on the lattice, through a
direct simulation of this function. Most importantly, in the deep infrared the
function deviates considerably from the value associated with the realization
of the aforementioned confinement scenario. In addition, the dependence of
u(q), and especially of its value at the origin, on the renormalization point
is clearly established. Some of the possible implications of these results are
briefly discussed.Comment: 25 pages, 10 figures; v2: typos corrected, expanded version that
matches the published articl
Off-Forward Parton Distributions
Recently, there have been some interesting developments involving off-forward
parton distributions of the nucleon, deeply virtual Compton scattering, and
hard diffractive vector-meson production. These developments are triggered by
the realization that the off-forward distributions contain information about
the internal spin structure of the nucleon and that diffractive
electroproduction of vector mesons depends on these unconventional
distributions. This paper gives a brief overview of the recent developments
Effective Field Theories and Inflation
We investigate the possible influence of very-high-energy physics on
inflationary predictions focussing on whether effective field theories can
allow effects which are parametrically larger than order H^2/M^2, where M is
the scale of heavy physics and H is the Hubble scale at horizon exit. By
investigating supersymmetric hybrid inflation models, we show that decoupling
does not preclude heavy-physics having effects for the CMB with observable size
even if H^2/M^2 << O(1%), although their presence can only be inferred from
observations given some a priori assumptions about the inflationary mechanism.
Our analysis differs from the results of hep-th/0210233, in which other kinds
of heavy-physics effects were found which could alter inflationary predictions
for CMB fluctuations, inasmuch as the heavy-physics can be integrated out here
to produce an effective field theory description of low-energy physics. We
argue, as in hep-th/0210233, that the potential presence of heavy-physics
effects in the CMB does not alter the predictions of inflation for generic
models, but does make the search for deviations from standard predictions
worthwhile.Comment: 19 pages, LaTeX, no figures, uses JHEP
ALPGEN, a generator for hard multiparton processes in hadronic collisions
This paper presents a new event generator, ALPGEN, dedicated to the study of
multiparton hard processes in hadronic collisions. The code performs, at the
leading order in QCD and EW interactions, the calculation of the exact matrix
elements for a large set of parton-level processes of interest in the study of
the Tevatron and LHC data. The current version of the code describes the
following final states: (W -> ffbar') QQbar+ N jets (Q being a heavy quark, and
f=l,q), with N f fbar)+QQbar+Njets (f=l,nu), with N
ffbar') + charm + N jets (f=l,q), N f fbar') + N jets (f=l,q) and
(Z/gamma* -> f fbar)+ N jets (f=l,nu), with N<=6; nW+mZ+lH+N jets, with
n+m+l+N<=8 and N<=3 including all 2-fermion decay modes of W and Z bosons, with
spin correlations; Q Qbar+N jets (N b f fbar' decays and relative
spin correlations included if Q=t; Q Qbar Q' Qbar'+N jets, with Q and Q' heavy
quarks (possibly equal) and N b f fbar'
decays and relative spin correlations included if Q=t; N jets, with N<=6.
Parton-level events are generated, providing full information on their colour
and flavour structure, enabling the evolution of the partons into fully
hadronised final states.Comment: 1+38 pages, uses JHEP.cls. Documents code version 1.2: extended list
of processes, updated documentation and bibliograph
Super-Hubble de Sitter Fluctuations and the Dynamical RG
Perturbative corrections to correlation functions for interacting theories in
de Sitter spacetime often grow secularly with time, due to the properties of
fluctuations on super-Hubble scales. This growth can lead to a breakdown of
perturbation theory at late times. We argue that Dynamical Renormalization
Group (DRG) techniques provide a convenient framework for interpreting and
resumming these secularly growing terms. In the case of a massless scalar field
in de Sitter with quartic self-interaction, the resummed result is also less
singular in the infrared, in precisely the manner expected if a dynamical mass
is generated. We compare this improved infrared behavior with large-N
expansions when applicable.Comment: 33 pages, 4 figure
Resolved Photon Processes
We review the present level of knowledge of the hadronic structure of the
photon, as revealed in interactions involving quarks and gluons ``in" the
photon. The concept of photon structure functions is introduced in the
description of deep--inelastic scattering, and existing
parametrizations of the parton densities in the photon are reviewed. We then
turn to hard \gamp\ and \gaga\ collisions, where we treat the production of
jets, heavy quarks, hard (direct) photons, \jpsi\ mesons, and lepton pairs. We
also comment on issues that go beyond perturbation theory, including recent
attempts at a comprehensive description of both hard and soft \gamp\ and \gaga\
interactions. We conclude with a list of open problems.Comment: LaTeX with equation.sty, 85 pages, 29 figures (not included). A
complete PS file of the paper, including figures, can be obtained via
anonymous ftp from
ftp://phenom.physics.wisc.edu/pub/preprints/1995/madph-95-898.ps.
Phenomenological description of quantum gravity inspired modified classical electrodynamics
We discuss a large class of phenomenological models incorporating quantum
gravity motivated corrections to electrodynamics. The framework is that of
electrodynamics in a birefringent and dispersive medium with non-local
constitutive relations, which are considered up to second order in the inverse
of the energy characterizing the quantum gravity scale. The energy-momentum
tensor, Green functions and frequency dependent refraction indices are
obtained, leading to departures from standard physics. The effective character
of the theory is also emphasized by introducing a frequency cutoff. The
analysis of its effects upon the standard notion of causality is performed,
showing that in the radiation regime the expected corrections get further
suppressed by highly oscillating terms, thus forbiding causality violations to
show up in the corresponding observational effects.Comment: 14 pages, to be published in Obregon Festschrift 2006, Gen. Rel. and
Gra
Manuscript Architect: a Web application for scientific writing in virtual interdisciplinary groups
BACKGROUND: Although scientific writing plays a central role in the communication of clinical research findings and consumes a significant amount of time from clinical researchers, few Web applications have been designed to systematically improve the writing process. This application had as its main objective the separation of the multiple tasks associated with scientific writing into smaller components. It was also aimed at providing a mechanism where sections of the manuscript (text blocks) could be assigned to different specialists. Manuscript Architect was built using Java language in conjunction with the classic lifecycle development method. The interface was designed for simplicity and economy of movements. Manuscripts are divided into multiple text blocks that can be assigned to different co-authors by the first author. Each text block contains notes to guide co-authors regarding the central focus of each text block, previous examples, and an additional field for translation when the initial text is written in a language different from the one used by the target journal. Usability was evaluated using formal usability tests and field observations. RESULTS: The application presented excellent usability and integration with the regular writing habits of experienced researchers. Workshops were developed to train novice researchers, presenting an accelerated learning curve. The application has been used in over 20 different scientific articles and grant proposals. CONCLUSION: The current version of Manuscript Architect has proven to be very useful in the writing of multiple scientific texts, suggesting that virtual writing by interdisciplinary groups is an effective manner of scientific writing when interdisciplinary work is required
- …
