179 research outputs found

    Order of magnitude wall time improvement of variational methane inversions by physical parallelization: a demonstration using TM5-4DVAR

    Get PDF
    Atmospheric inversions are used to constrain emissions of trace gases using atmospheric mole-fraction measurements. The four-dimensional variational (4DVAR) inversion approach allows optimization of emissions at a higher temporal and spatial resolution than ensemble or analytical approaches but provides limited opportunities for scalable parallelization because it is an iterative optimization method. Multidecadal variational inversions are needed to optimally extract information from the long measurement records of long-lived atmospheric trace gases like carbon dioxide and methane. However, the wall time needed – up to months – complicates these multidecadal inversions. The physical parallelization (PP) method introduced by Chevallier (2013) addresses this problem for carbon dioxide inversions by splitting the period of the chemical transport model into blocks and running them in parallel. Here, we present a new implementation of the PP method which is suitable for methane inversions accounting for the chemical sink of methane. The performance of the PP method is tested in an 11-year inversion using a TM5-4DVAR inversion setup that assimilates surface observations to optimize methane emissions at grid scale. Our PP implementation improves the wall time performance by a factor of 5 and shows excellent agreement with a full serial inversion in an identical configuration (global mean emissions difference =0.06 % with an interannual variation correlation R=0.99; regional mean emission difference &lt;5 % and interannual variation R&gt;0.94). The wall time improvement of the PP method increases with the size of the inversion period. The PP method is planned to be used in future releases of the Copernicus Atmosphere Monitoring Service (CAMS) multidecadal methane reanalysis.</p

    Impact of synthetic space-borne NO2 observations from the Sentinel-4 and Sentinel-5P missions on tropospheric NO2 analyses

    Get PDF
    We present an Observing System Simulation Experiment (OSSE) dedicated to the evaluation of the added value of the Sentinel-4 and Sentinel-5P missions for tropospheric nitrogen dioxide (NO2). Sentinel-4 is a geostationary (GEO) mission covering the European continent, providing observations with high temporal resolution (hourly). Sentinel-5P is a low Earth orbit (LEO) mission providing daily observations with a global coverage. The OSSE experiment has been carefully designed, with separate models for the simulation of observations and for the assimilation experiments and with conservative estimates of the total observation uncertainties. In the experiment we simulate Sentinel-4 and Sentinel-5P tropospheric NO2 columns and surface ozone concentrations at 7 by 7 km resolution over Europe for two 3-month summer and winter periods. The synthetic observations are based on a nature run (NR) from a chemistry transport model (MOCAGE) and error estimates using instrument characteristics. We assimilate the simulated observations into a chemistry transport model (LOTOS-EUROS) independent of the NR to evaluate their impact on modelled NO2 tropospheric columns and surface concentrations. The results are compared to an operational system where only ground-based ozone observations are ingested. Both instruments have an added value to analysed NO2 columns and surface values, reflected in decreased biases and improved correlations. The Sentinel-4 NO2 observations with hourly temporal resolution benefit modelled NO2 analyses throughout the entire day where the daily Sentinel-5P NO2 observations have a slightly lower impact that lasts up to 3–6 h after overpass. The evaluated benefits may be even higher in reality as the applied error estimates were shown to be higher than actual errors in the now operational Sentinel-5P NO2 products. We show that an accurate representation of the NO2 profile is crucial for the benefit of the column observations on surface values. The results support the need for having a combination of GEO and LEO missions for NO2 analyses in view of the complementary benefits of hourly temporal resolution (GEO, Sentinel-4) and global coverage (LEO, Sentinel-5P)

    Inverse modeling of CH4 emissions for 2010 - 2011 using different satellite retrieval products from GOSAT and SCIAMACHY

    Get PDF
    Beginning in 2009 new space-borne observations of dry-air column-averaged mole fractions of atmospheric methane (XCH4) became available from the Thermal And Near infrared Sensor for carbon Observations - Fourier Transform Spectrometer (TANSO-FTS) instrument onboard the Greenhouse Gases Observing SATellite (GOSAT). Until April 2012 concurrent CH4 measurements were provided by the SCanning Imaging Absorption spectroMeter for Atmospheric CartograpHY (SCIAMACHY) instrument onboard ENVISAT. The GOSAT and SCIAMACHY XCH4 retrievals can be directly compared during their circa 32-month period of overlap. We estimate monthly average CH4 emissions between January 2010 and December 2011, using the TM5-4DVAR inverse modeling system. Additionally, high-accuracy measurements from the National Oceanic and Atmospheric Administration Earth System Research Laboratory (NOAA ESRL) global air sampling network are used, providing strong constraints of the remote surface atmosphere. We discuss five inversion scenarios that make use of different GOSAT and SCIAMACHY XCH4 retrieval products, including two sets of GOSAT proxy retrievals processed independently by the Netherlands Institute for Space Research (SRON) / Karlsruhe Institute of Technology (KIT), and the University of Leicester (UL), and the RemoTeC "Full-Physics" (FP) XCH4 retrievals available from SRON/KIT. 2-year average emission maps show a good overall agreement among all GOSAT-based inversions, but also compared to the SCIAMACHY-based inversion, with consistent flux adjustment patterns, particularly across Equatorial Africa and North America. The inversions are validated against independent shipboard and aircraft observations, and XCH4 measurements available from the Total Carbon Column Observing Network (TCCON). All GOSAT and SCIAMACHY inversions show very similar validation performance.JRC.H.2-Air and Climat

    Impact of synthetic space-borne NO2 observations from the Sentinel-4 and Sentinel-5P missions on tropospheric NO2 analyses

    Get PDF
    We present an Observing System Simulation Experiment (OSSE) dedicated to the evaluation of the added value of the Sentinel-4 and Sentinel-5P missions for tropospheric nitrogen dioxide (NO2). Sentinel-4 is a geostationary (GEO) mission covering the European continent, providing observations with high temporal resolution (hourly). Sentinel-5P is a low Earth orbit (LEO) mission providing daily observations with a global coverage. The OSSE experiment has been carefully designed, with separate models for the simulation of observations and for the assimilation experiments and with conservative estimates of the total observation uncertainties. In the experiment we simulate Sentinel-4 and Sentinel-5P tropospheric NO2 columns and surface ozone concentrations at 7 by 7 km resolution over Europe for two 3-month summer and winter periods. The synthetic observations are based on a nature run (NR) from a chemistry transport model (MOCAGE) and error estimates using instrument characteristics. We assimilate the simulated observations into a chemistry transport model (LOTOS-EUROS) independent of the NR to evaluate their impact on modelled NO2 tropospheric columns and surface concentrations. The results are compared to an operational system where only ground-based ozone observations are ingested. Both instruments have an added value to analysed NO2 columns and surface values, reflected in decreased biases and improved correlations. The Sentinel-4 NO2 observations with hourly temporal resolution benefit modelled NO2 analyses throughout the entire day where the daily Sentinel-5P NO2 observations have a slightly lower impact that lasts up to 3–6 h after overpass. The evaluated benefits may be even higher in reality as the applied error estimates were shown to be higher than actual errors in the now operational Sentinel-5P NO2 products. We show that an accurate representation of the NO2 profile is crucial for the benefit of the column observations on surface values. The results support the need for having a combination of GEO and LEO missions for NO2 analyses in view of the complementary benefits of hourly temporal resolution (GEO, Sentinel-4) and global coverage (LEO, Sentinel-5P).publishedVersio

    Development of a regional feature selection-based machine learning system (RFSML v1.0) for air pollution forecasting over China

    Get PDF
    With the explosive growth of atmospheric data, machine learning models have achieved great success in air pollution forecasting because of their higher computational efficiency than the traditional chemical transport models. However, in previous studies, new prediction algorithms have only been tested at stations or in a small region; a large-scale air quality forecasting model remains lacking to date. Huge dimensionality also means that redundant input data may lead to increased complexity and therefore the over-fitting of machine learning models. Feature selection is a key topic in machine learning development, but it has not yet been explored in atmosphere-related applications. In this work, a regional feature selection-based machine learning (RFSML) system was developed, which is capable of predicting air quality in the short term with high accuracy at the national scale. Ensemble-Shapley additive global importance analysis is combined with the RFSML system to extract significant regional features and eliminate redundant variables at an affordable computational expense. The significance of the regional features is also explained physically. Compared with a standard machine learning system fed with relative features, the RFSML system driven by the selected key features results in superior interpretability, less training time, and more accurate predictions. This study also provides insights into the difference in interpretability among machine learning models (i.e., random forest, gradient boosting, and multi-layer perceptron models).</p

    Curriculum vitae of the LOTOS-EUROS (v2.0) chemistry transport model

    Get PDF
    The development and application of chemistry transport models has a long tradition. Within the Netherlands the LOTOS–EUROS model has been developed by a consortium of institutes, after combining its independently developed predecessors in 2005. Recently, version 2.0 of the model was released as an open-source version. This paper presents the curriculum vitae of the model system, describing the model's history, model philosophy, basic features and a validation with EMEP stations for the new benchmark year 2012, and presents cases with the model's most recent and key developments. By setting the model developments in context and providing an outlook for directions for further development, the paper goes beyond the common model description. With an origin in ozone and sulfur modelling for the models LOTOS and EUROS, the application areas were gradually extended with persistent organic pollutants, reactive nitrogen, and primary and secondary particulate matter. After the combination of the models to LOTOS–EUROS in 2005, the model was further developed to include new source parametrizations (e.g. road resuspension, desert dust, wildfires), applied for operational smog forecasts in the Netherlands and Europe, and has been used for emission scenarios, source apportionment, and long-term hindcast and climate change scenarios. LOTOS–EUROS has been a front-runner in data assimilation of ground-based and satellite observations and has participated in many model intercomparison studies. The model is no longer confined to applications over Europe but is also applied to other regions of the world, e.g. China. The increasing interaction with emission experts has also contributed to the improvement of the model's performance. The philosophy for model development has always been to use knowledge that is state of the art and proven, to keep a good balance in the level of detail of process description and accuracy of input and output, and to keep a good record on the effect of model changes using benchmarking and validation. The performance of v2.0 with respect to EMEP observations is good, with spatial correlations around 0.8 or higher for concentrations and wet deposition. Temporal correlations are around 0.5 or higher. Recent innovative applications include source apportionment and data assimilation, particle number modelling, and energy transition scenarios including corresponding land use changes as well as Saharan dust forecasting. Future developments would enable more flexibility with respect to model horizontal and vertical resolution and further detailing of model input data. This includes the use of different sources of land use characterization (roughness length and vegetation), detailing of emissions in space and time, and efficient coupling to meteorology from different meteorological models

    Data assimilation of CrIS NH3 satellite observations for improving spatiotemporal NH3 distributions in LOTOS-EUROS

    Get PDF
    Atmospheric levels of ammonia (NH3) have substantially increased during the last century, posing a hazard to both human health and environmental quality. The atmospheric budget of NH3, however, is still highly uncertain due to an overall lack of observations. Satellite observations of atmospheric NH3 may help us in the current observational and knowledge gaps. Recent observations of the Cross-track Infrared Sounder (CrIS) provide us with daily, global distributions of NH3. In this study, the CrIS NH3 product is assimilated into the LOTOS-EUROS chemistry transport model using two different methods aimed at improving the modeled spatiotemporal NH3 distributions. In the first method NH3 surface concentrations from CrIS are used to fit spatially varying NH3 emission time factors to redistribute model input NH3 emissions over the year. The second method uses the CrIS NH3 profile to adjust the NH3 emissions using a local ensemble transform Kalman filter (LETKF) in a top-down approach. The two methods are tested separately and combined, focusing on a region in western Europe (Germany, Belgium and the Netherlands). In this region, the mean CrIS NH3 total columns were up to a factor 2 higher than the simulated NH3 columns between 2014 and 2018, which, after assimilating the CrIS NH3 columns using the LETKF algorithm, led to an increase in the total NH3 emissions of up to approximately 30 %. Our results illustrate that CrIS NH3 observations can be used successfully to estimate spatially variable NH3 time factors and improve NH3 emission distributions temporally, especially in spring (March to May). Moreover, the use of the CrIS-based NH3 time factors resulted in an improved comparison with the onset and duration of the NH3 spring peak observed at observation sites at hourly resolution in the Netherlands. Assimilation of the CrIS NH3 columns with the LETKF algorithm is mainly advantageous for improving the spatial concentration distribution of the modeled NH3 fields. Compared to in situ observations, a combination of both methods led to the most significant improvements in modeled monthly NH3 surface concentration and NH4+ wet deposition fields, illustrating the usefulness of the CrIS NH3 products to improve the temporal representativity of the model and better constrain the budget in agricultural areas

    A gridded air quality forecast through fusing site-available machine learning predictions from RFSML v1.0 and chemical transport model results from GEOS-Chem v13.1.0 using the ensemble Kalman filter

    Get PDF
    Statistical methods, particularly machine learning models, have gained significant popularity in air quality predictions. These prediction models are commonly trained using the historical measurement datasets independently collected at the environmental monitoring stations and their operational forecasts in advance using inputs of the real-time ambient pollutant observations. Therefore, these high-quality machine learning models only provide site-available predictions and cannot solely be used as the operational forecast. In contrast, deterministic chemical transport models (CTMs), which simulate the full life cycles of air pollutants, provide predictions that are continuous in the 3D field. Despite their benefits, CTM predictions are typically biased, particularly on a fine scale, owing to the complex error sources due to the emission, transport, and removal of pollutants. In this study, we proposed a fusion of site-available machine learning prediction, which is from our regional feature selection-based machine learning model (RFSML v1.0), and a CTM prediction. Compared to the normal pure machine learning model, the fusion system provides a gridded prediction with relatively high accuracy. The prediction fusion was conducted using the Bayesian-theory-based ensemble Kalman filter (EnKF). Background error covariance was an essential part in the assimilation process. Ensemble CTM predictions driven by the perturbed emission inventories were initially used for representing their spatial covariance statistics, which could resolve the main part of the CTM error. In addition, a covariance inflation algorithm was designed to amplify the ensemble perturbations to account for other model errors next to the uncertainty in emission inputs. Model evaluation tests were conducted based on independent measurements. Our EnKF-based prediction fusion presented superior performance compared to the pure CTM. Moreover, covariance inflation further enhanced the fused prediction, particularly in cases of severe underestimation.</p

    Time varying sound propagation for a large industrial area

    Get PDF
    The distance between noise sources at a large industrial area and a local community can be in the order of several kilometers. At such distances it may not be clear which sources are the main contributors to possible noise complaints. A long-term monitoring project is described that measures the sound sources in the industrial area and the sound in the nearby residential area. This paper focuses on the time varying sound propagation that is needed to determine the industrial source strengths and the relevance of the sources for the nearby community. Data from a meteorological model is combined with measurements from four geographically distributed meteorological masts via data assimilation. In this way the wind and temperature, as a function of height and time, between all possible source and receiver locations can be determined. Next, the corresponding sound propagation for all transfer paths is obtained near real time as these have been calculated beforehand. It will be shown that this monitoring project captures the time varying industrial noise as perceived in the residential area, whereas a standard noise model uses a constant sound propagation based on an average meteorology. This approach makes a comparison with registered complaints over time meaningful. © 2016, German Acoustical Society (DEGA). All rights reserved
    corecore