6,174 research outputs found
TFAW: wavelet-based signal reconstruction to reduce photometric noise in time-domain surveys
There have been many efforts to correct systematic effects in astronomical
light curves to improve the detection and characterization of planetary
transits and astrophysical variability. Algorithms like the Trend Filtering
Algorithm (TFA) use simultaneously-observed stars to remove systematic effects,
and binning is used to reduce high-frequency random noise. We present TFAW, a
wavelet-based modified version of TFA. TFAW aims to increase the periodic
signal detection and to return a detrended and denoised signal without
modifying its intrinsic characteristics. We modify TFA's frequency analysis
step adding a Stationary Wavelet Transform filter to perform an initial noise
and outlier removal and increase the detection of variable signals. A wavelet
filter is added to TFA's signal reconstruction to perform an adaptive
characterization of the noise- and trend-free signal and the noise contribution
at each iteration while preserving astrophysical signals. We carried out tests
over simulated sinusoidal and transit-like signals to assess the effectiveness
of the method and applied TFAW to real light curves from TFRM. We also studied
TFAW's application to simulated multiperiodic signals, improving their
characterization. TFAW improves the signal detection rate by increasing the
signal detection efficiency (SDE) up to a factor ~2.5x for low SNR light
curves. For simulated transits, the transit detection rate improves by a factor
~2-5x in the low-SNR regime compared to TFA. TFAW signal approximation performs
up to a factor ~2x better than bin averaging for planetary transits. The
standard deviations of simulated and real TFAW light curves are ~40x better
than TFA. TFAW yields better MCMC posterior distributions and returns lower
uncertainties, less biased transit parameters and narrower (~10x) credibility
intervals for simulated transits. We present a newly-discovered variable star
from TFRM.Comment: Accepted for publication by A&A. 13 pages, 16 figures and 5 table
High Frequency Trading and Mini Flash Crashes
We analyse all Mini Flash Crashes (or Flash Equity Failures) in the US equity
markets in the four most volatile months during 2006-2011. In contrast to
previous studies, we find that Mini Flash Crashes are the result of regulation
framework and market fragmentation, in particular due to the aggressive use of
Intermarket Sweep Orders and Regulation NMS protecting only Top of the Book. We
find strong evidence that Mini Flash Crashes have an adverse impact on market
liquidity and are associated with Fleeting Liquidity
Information Recovery In Behavioral Networks
In the context of agent based modeling and network theory, we focus on the
problem of recovering behavior-related choice information from
origin-destination type data, a topic also known under the name of network
tomography. As a basis for predicting agents' choices we emphasize the
connection between adaptive intelligent behavior, causal entropy maximization
and self-organized behavior in an open dynamic system. We cast this problem in
the form of binary and weighted networks and suggest information theoretic
entropy-driven methods to recover estimates of the unknown behavioral flow
parameters. Our objective is to recover the unknown behavioral values across
the ensemble analytically, without explicitly sampling the configuration space.
In order to do so, we consider the Cressie-Read family of entropic functionals,
enlarging the set of estimators commonly employed to make optimal use of the
available information. More specifically, we explicitly work out two cases of
particular interest: Shannon functional and the likelihood functional. We then
employ them for the analysis of both univariate and bivariate data sets,
comparing their accuracy in reproducing the observed trends.Comment: 14 pages, 6 figures, 4 table
- …
