1,971 research outputs found
Surface Functionalization with Polymers: Towards Biocompatible and Ecofriendly Lubrication of Engineering Systems
A new dynamic property of human consciousness
As pointed out by William James, "the consciousness is a dynamic process, not a thing" , during which short term integration is succeeded by another differentiated neural state through the continual interplay between the environment, the body, and the brain itself. Thus, the dynamic structure underlying successive states of the brain is important for understanding human consciousness as a process. In order to investigate the dynamic property of human consciousness, we developed a new method to reconstruct a state space from electroencephalogram(EEG), in which a trajectory, reflecting states of consciousness, is constructed based on the global information integration of the brain. EEGs were obtained from 14 subjects received an intravenous bolus of propopol. Here we show that the degree of human consciousness is directly associated with the information integration capacity of gamma wave, which is significantly higher in the conscious state than in the unconscious state. And we found a new time evolutional property of human consciousness. The conscious state showed a lower dimensional dynamic process which changed to a random-like process after loss of consciousness. This characteristic dynamic property, appeared only in the gamma band, might be used as an indicator to distinguish the conscious and unconscious states and also considered as an important fact for the human consciousness model
Influence of temperature on the frictional properties of water-lubricated surfaces
The influence of temperature on the lubricating properties of neat water for tribopairs with varying bulk elasticity moduli and surface hydrophilicity, namely hard-hydrophobic interface (h-HB), hard-hydrophilic interface (h-HL), soft-hydrophobic interface (s-HB), and soft-hydrophilic interface (s-HL), has been investigated. With increasing temperature, the coefficients of friction generally increased due to the decreasing viscosity of water. This change was more clearly manifested from soft interfaces for more feasible formation of lubricating films. Nevertheless, dominant lubrication mechanism appears to be boundary and mixed lubrication even for soft interfaces at all speeds (up to 1200 mm/s) and temperatures (1 to 90 °C) investigated. The results from this study are expected to provide a reference to explore the temperature-dependent tribological behavior of more complex aqueous lubricants, e.g., those involving various additives, for a variety of tribosystems
End-grafted Sugar Chains as Aqueous Lubricant Additives: Synthesis and Macrotribological Tests of Poly( l -lysine)- graft -Dextran (PLL- g -dex) Copolymers
Comb-like graft copolymers with carbohydrate side chains have been developed as aqueous lubricant additives for oxide-based tribosystems, in an attempt to mimic biological lubrication systems, whose surfaces are known to be covered with sugar-rich layers. As adopted in the previous studies of the graft copolymer poly(l-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG), which showed both excellent lubricating and antifouling properties, a similar approach was chosen to graft dextran chains onto the same backbone, thus generating PLL-g-dex. PLL-g-dex copolymers readily adsorb from aqueous solution onto negatively charged oxide surfaces. Tribological characterization at the macroscopic scale, either under pure sliding conditions or a mixed sliding/rolling contact regime, shows that PLL-g-dex is very effective for the lubrication of oxide-based tribosystems. The relative lubricating capabilities of PLL-g-dex copolymers compared with PLL-g-PEG copolymers were observed to be highly dependent on the molecular structure of the copolymers (in particular, side-chain density along the backbone) and the measurement conditions (in particular, time between tribocontacts); the PLL-g-dex copolymers with a low degree of grafted side chains (≤20% grafting of available protonated primary amine groups along the backbone) showed better lubricating performance than their PLL-g-PEG counterparts at high tribocontact frequency (≥ca. 0.32Hz
Propofol Induction Reduces the Capacity for Neural Information Integration: Implications for the Mechanism of Consciousness and General Anesthesia
The cognitive unbinding paradigm suggests that the synthesis of cognitive information is attenuated by general anesthesia. Here, we investigated the functional organization of brain activities in the conscious and anesthetized states, based on characteristic functional segregation and integration of electroencephalography (EEG). EEG recordings were obtained from 14 subjects undergoing induction of general anesthesia with propofol. We quantified changes in mean information integration capacity in each band of the EEG. After induction with propofol, mean information integration capacity was reduced most prominently in the gamma band of the EEG (p=0.0001). Furthermore, we demonstrate that loss of consciousness is reflected by the breakdown of the spatiotemporal organization of gamma waves. Induction of general anesthesia with propofol reduces the capacity for information integration in the brain. These data directly support the information integration theory of consciousness and the cognitive unbinding paradigm of general anesthesia
Macroscopic Tribological Testing of Alkanethiol Self-assembled Monolayers (SAMs): Pin-on-disk Tribometry with Elastomeric Sliding Contacts
We demonstrate that the frictional properties of alkanethiol self-assembled monolayers (SAMs) with various surface-chemical and structural features can be investigated on a macroscopic scale by employing an elastomer as the sliding partner in pin-on-disk tribometry. The mild contact conditions at the elastomeric tribological interface allow the SAM films to remain virtually intact despite the tribological stress. Sliding contact between SAMs and elastomers over the speed range available from an ordinary tribometer in a liquid environment induced a broad range of lubrication mechanisms, ranging from boundary to fluid-film lubrication regimes. Thus, the impact of both the chemical and structural characteristics of SAMs on the formation of fluid films and interfacial friction forces could be probed in the absence of wear processes. Given the large SAM "toolbox” that is readily available for the modification of surface-chemical characteristics, this approach provides an opportunity to investigate the influence of surface chemistry on the frictional properties of elastomeric tribological contact
- …
