4 research outputs found
A multilevel intervention to increase physical activity and improve healthy eating and physical literacy among young children (ages 3-5) attending early childcare centres: the Healthy Start-Départ Santé cluster randomised controlled trial study protocol
Abstract: Background: Childhood obesity is a growing concern for public health. Given a majority of children in many countries spend approximately 30 h per week in early childcare centers, this environment represents a promising setting for implementing strategies to foster healthy behaviours for preventing and controlling childhood obesity. Healthy Start-Départ Santé was designed to promote physical activity, physical literacy, and healthy eating among preschoolers. The objectives of this study are to assess the effectiveness of the Healthy Start-Départ Santé intervention in improving physical activity levels, physical literacy, and healthy eating among preschoolers attending early childcare centers. Methods/Design: This study follows a cluster randomized controlled trial design in which the childcare centers are randomly assigned to receive the intervention or serve as usual care controls. The Healthy Start-Départ Santé intervention is comprised of interlinked components aiming to enable families and educators to integrate physical activity and healthy eating in the daily lives of young children by influencing factors at the intrapersonal, interpersonal, organizational, community, physical environment and policy levels. The intervention period, spanning 6-8 months, is preceded and followed by data collections. Participants are recruited from 61 childcare centers in two Canadian provinces, New Brunswick and Saskatchewan. Centers eligible for this study have to prepare and provide meals for lunch and have at least 20 children between the ages of 3 and 5. Centers are excluded if they have previously received a physical activity or nutrition promoting intervention. Eligible centers are stratified by province, geographical location (urban or rural) and language (English or French), then recruited and randomized using a one to one protocol for each stratum. Data collection is ongoing. The primary study outcomes are assessed using accelerometers (physical activity levels), the Test of Gross Motor Development-II (physical literacy), and digital photography-assisted weighted plate waste (food intake). Discussion: The multifaceted approach of Healthy Start-Départ Santé positions it well to improve the physical literacy and both dietary and physical activity behaviors of children attending early childcare centers. The results of this study will be of relevance given the overwhelming prevalence of overweight and obesity in children worldwide. Trial registration: NCT02375490 (ClinicalTrials.gov registry)
SARS-CoV-2 infection results in immune responses in the respiratory tract and peripheral blood that suggest mechanisms of disease severity
Respiratory tract infection with SARS-CoV-2 results in varying immunopathology underlying COVID-19. We examine cellular, humoral and cytokine responses covering 382 immune components in longitudinal blood and respiratory samples from hospitalized COVID-19 patients. SARS-CoV-2-specific IgM, IgG, IgA are detected in respiratory tract and blood, however, receptor-binding domain (RBD)-specific IgM and IgG seroconversion is enhanced in respiratory specimens. SARS-CoV-2 neutralization activity in respiratory samples correlates with RBD-specific IgM and IgG levels. Cytokines/chemokines vary between respiratory samples and plasma, indicating that inflammation should be assessed in respiratory specimens to understand immunopathology. IFN-α2 and IL-12p70 in endotracheal aspirate and neutralization in sputum negatively correlate with duration of hospital stay. Diverse immune subsets are detected in respiratory samples, dominated by neutrophils. Importantly, dexamethasone treatment does not affect humoral responses in blood of COVID-19 patients. Our study unveils differential immune responses between respiratory samples and blood, and shows how drug therapy affects immune responses during COVID-19
Methylomic and phenotypic analysis of the ModH5 phasevarion of Helicobacter pylori
The Helicobacter pylori phase variable gene modH, typified by gene HP1522 in strain 26695, encodes a N6-adenosine type III DNA methyltransferase. Our previous studies identified multiple strain-specific modH variants (modH1 – modH19) and showed that phase variation of modH5 in H. pylori P12 influenced expression of motility-associated genes and outer membrane protein gene hopG. However, the ModH5 DNA recognition motif and the mechanism by which ModH5 controls gene expression were unknown. Here, using comparative single molecule real-time sequencing, we identify the DNA site methylated by ModH5 as 5′-Gm6ACC-3′. This motif is vastly underrepresented in H. pylori genomes, but overrepresented in a number of virulence genes, including motility-associated genes, and outer membrane protein genes. Motility and the number of flagella of H. pylori P12 wild-type were significantly higher than that of isogenic modH5 OFF or ΔmodH5 mutants, indicating that phase variable switching of modH5 expression plays a role in regulating H. pylori motility phenotypes. Using the flagellin A (flaA) gene as a model, we show that ModH5 modulates flaA promoter activity in a GACC methylation-dependent manner. These findings provide novel insights into the role of ModH5 in gene regulation and how it mediates epigenetic regulation of H. pylori motility.Full Tex
