15,739 research outputs found
提高全民對食品營養及安全的認知是解決食品安全問題的關鍵
本文結合最近發生的食品安全事件及嬰幼兒食品的營養及安全問題,指出食品安全問題在我國大有日趨嚴重之勢,并建議國家有關部門、媒體和社會各界共同配合,對廣大消費者和食品生產者進行食品營養和食品安全知識和法規的教育及宣傳,以提高他們的認知水平,這是解決食品安全問題的關鍵。
The recent food safety incidents and the infant food nutrition and safety issues indicate that food safety has become worse and worse in China.The article suggests that the key to solving the food safety problems fundamentally is to educate the consumers and food manufacturers,with the concerted efforts of government,media and the public,in order to enhance their understanding of food nutrition and safety
Simulations and symmetries
We investigate the range of applicability of a model for the real-space power spectrum based on N-body dynamics and a (quadratic) Lagrangian bias expansion. This combination uses the highly accurate particle displacements that can be efficiently achieved by modern N-body methods with a symmetries-based bias expansion which describes the clustering of any tracer on large scales.We showthat at lowredshifts, and formoderately biased tracers, the substitution of N-body-determined dynamics improves over an equivalent model using perturbation theory by more than a factor of two in scale, while at high redshifts and for highly biased tracers the gains are more modest. This hybrid approach lends itself well to emulation. By removing the need to identify haloes and subhaloes, and by not requiring any galaxy-formation-related parameters to be included, the emulation task is significantly simplified at the cost ofmodelling a more limited range in scale. 2020 The Author(s)
Identifying smart design attributes for Industry 4.0 customization using a clustering Genetic Algorithm
Industry 4.0 aims at achieving mass customization at a
mass production cost. A key component to realizing this is accurate
prediction of customer needs and wants, which is however a
challenging issue due to the lack of smart analytics tools. This
paper investigates this issue in depth and then develops a predictive
analytic framework for integrating cloud computing, big data
analysis, business informatics, communication technologies, and
digital industrial production systems. Computational intelligence
in the form of a cluster k-means approach is used to manage
relevant big data for feeding potential customer needs and wants
to smart designs for targeted productivity and customized mass
production. The identification of patterns from big data is achieved
with cluster k-means and with the selection of optimal attributes
using genetic algorithms. A car customization case study shows
how it may be applied and where to assign new clusters with
growing knowledge of customer needs and wants. This approach
offer a number of features suitable to smart design in realizing
Industry 4.0
Trimaximal neutrino mixing from vacuum alignment in A4 and S4 models
Recent T2K results indicate a sizeable reactor angle theta_13 which would
rule out exact tri-bimaximal lepton mixing. We study the vacuum alignment of
the Altarelli-Feruglio A4 family symmetry model including additional flavons in
the 1' and 1" representations and show that it leads to trimaximal mixing in
which the second column of the lepton mixing matrix consists of the column
vector (1,1,1)^T/sqrt{3}, with a potentially large reactor angle. In order to
limit the reactor angle and control the higher order corrections, we propose a
renormalisable S4 model in which the 1' and 1" flavons of A4 are unified into a
doublet of S4 which is spontaneously broken to A4 by a flavon which enters the
neutrino sector at higher order. We study the vacuum alignment in the S4 model
and show that it predicts accurate trimaximal mixing with approximate
tri-bimaximal mixing, leading to a new mixing sum rule testable in future
neutrino experiments. Both A4 and S4 models preserve form dominance and hence
predict zero leptogenesis, up to renormalisation group corrections.Comment: 24 pages, 2 figures, version to be published in JHE
On the identification of categories and choices for specification-based test case generation
HKU CS Tech Report TR 2004-02The category-partition method and the classification-tree method help construct test cases from specifications. In both methods, an early step is to identify a set of categories (or classifications) and choices (or classes). This is often performed in an ad hoc manner due to the absence of systematic techniques. In this paper, we report and discuss three empirical studies to investigate the common mistakes made by software testers in such an ad hoc approach. The empirical studies serve three purposes: (a) to make the knowledge of common mistakes known to other testers so that they can avoid repeating the same mistakes, (b) to facilitate researchers and practitioners develop systematic identification techniques, and (c) to provide a means of measuring the effectiveness of newly developed identification techniques. Based on the results of our studies, we also formulate a checklist to help testers detect such mistakes. © 2004 Elsevier B.V. All rights reserved.postprin
Impact of melamine-tainted milk on foetal kidneys and disease development later in life
published_or_final_versio
Delocalized single-photon Dicke states and the Leggett- Garg inequality in solid state systems
We show how to realize a single-photon Dicke state in a large one-dimensional
array of two- level systems, and discuss how to test its quantum properties.
Realization of single-photon Dicke states relies on the cooperative nature of
the interaction between a field reservoir and an array of two-level-emitters.
The resulting dynamics of the delocalized state can display Rabi-like
oscillations when the number of two-level emitters exceeds several hundred. In
this case the large array of emitters is essentially behaving like a
mirror-less cavity. We outline how this might be realized using a
multiple-quantum-well structure and discuss how the quantum nature of these
oscillations could be tested with the Leggett-Garg inequality and its
extensions.Comment: 29 pages, 5 figures, journal pape
Immunomodulatory activity of Pestalotiopsis sp., an endophytic fungus from Tripterygium wilfordii
published_or_final_versio
An SO(10) Grand Unified Theory of Flavor
We present a supersymmetric SO(10) grand unified theory (GUT) of flavor based
on an family symmetry. It makes use of our recent proposal to use SO(10)
with type II seesaw mechanism for neutrino masses combined with a simple ansatz
that the dominant Yukawa matrix (the {\bf 10}-Higgs coupling to matter) has
rank one. In this paper, we show how the rank one model can arise within some
plausible assumptions as an effective field theory from vectorlike {\bf 16}
dimensional matter fields with masses above the GUT scale. In order to obtain
the desired fermion flavor texture we use flavon multiplets which acquire
vevs in the ground state of the theory. By supplementing the theory with
an additional discrete symmetry, we find that the flavon vacuum field
alignments take a discrete set of values provided some of the higher
dimensional couplings are small. Choosing a particular set of these vacuum
alignments appears to lead to an unified understanding of observed quark-lepton
flavor:
(i) the lepton mixing matrix that is dominantly tri-bi-maximal with small
corrections related to quark mixings; (ii) quark lepton mass relations at GUT
scale: and and (iii) the solar to
atmospheric neutrino mass ratio in agreement with observations. The model predicts the neutrino
mixing parameter, ,
which should be observable in planned long baseline experiments.Comment: Final version of the paper as it will appear in JHEP
Human Bocavirus NS1 and NS1-70 Proteins Inhibit TNF-α-Mediated Activation of NF-κB by targeting p65.
Human bocavirus (HBoV), a parvovirus, is a single-stranded DNA etiologic agent causing lower respiratory tract infections in young children worldwide. Nuclear factor kappa B (NF-κB) transcription factors play crucial roles in clearance of invading viruses through activation of many physiological processes. Previous investigation showed that HBoV infection could significantly upregulate the level of TNF-α which is a strong NF-κB stimulator. Here we investigated whether HBoV proteins modulate TNF-α-mediated activation of the NF-κB signaling pathway. We showed that HBoV NS1 and NS1-70 proteins blocked NF-κB activation in response to TNF-α. Overexpression of TNF receptor-associated factor 2 (TRAF2)-, IκB kinase alpha (IKKα)-, IκB kinase beta (IKKβ)-, constitutively active mutant of IKKβ (IKKβ SS/EE)-, or p65-induced NF-κB activation was inhibited by NS1 and NS1-70. Furthermore, NS1 and NS1-70 didn't interfere with TNF-α-mediated IκBα phosphorylation and degradation, nor p65 nuclear translocation. Coimmunoprecipitation assays confirmed the interaction of both NS1 and NS1-70 with p65. Of note, NS1 but not NS1-70 inhibited TNF-α-mediated p65 phosphorylation at ser536. Our findings together indicate that HBoV NS1 and NS1-70 inhibit NF-κB activation. This is the first time that HBoV has been shown to inhibit NF-κB activation, revealing a potential immune-evasion mechanism that is likely important for HBoV pathogenesis
- …
