40 research outputs found
Dusty Planetary Systems
Extensive photometric stellar surveys show that many main sequence stars show
emission at infrared and longer wavelengths that is in excess of the stellar
photosphere; this emission is thought to arise from circumstellar dust. The
presence of dust disks is confirmed by spatially resolved imaging at infrared
to millimeter wavelengths (tracing the dust thermal emission), and at optical
to near infrared wavelengths (tracing the dust scattered light). Because the
expected lifetime of these dust particles is much shorter than the age of the
stars (>10 Myr), it is inferred that this solid material not primordial, i.e.
the remaining from the placental cloud of gas and dust where the star was born,
but instead is replenished by dust-producing planetesimals. These planetesimals
are analogous to the asteroids, comets and Kuiper Belt objects (KBOs) in our
Solar system that produce the interplanetary dust that gives rise to the
zodiacal light (tracing the inner component of the Solar system debris disk).
The presence of these "debris disks" around stars with a wide range of masses,
luminosities, and metallicities, with and without binary companions, is
evidence that planetesimal formation is a robust process that can take place
under a wide range of conditions. This chapter is divided in two parts. Part I
discusses how the study of the Solar system debris disk and the study of debris
disks around other stars can help us learn about the formation, evolution and
diversity of planetary systems by shedding light on the frequency and timing of
planetesimal formation, the location and physical properties of the
planetesimals, the presence of long-period planets, and the dynamical and
collisional evolution of the system. Part II reviews the physical processes
that affect dust particles in the gas-free environment of a debris disk and
their effect on the dust particle size and spatial distribution.Comment: 68 pages, 25 figures. To be published in "Solar and Planetary
Systems" (P. Kalas and L. French, Eds.), Volume 3 of the series "Planets,
Stars and Stellar Systems" (T.D. Oswalt, Editor-in-chief), Springer 201
Planetary Rings
Planetary rings are the only nearby astrophysical disks, and the only disks
that have been investigated by spacecraft. Although there are significant
differences between rings and other disks, chiefly the large planet/ring mass
ratio that greatly enhances the flatness of rings (aspect ratios as small as
1e-7), understanding of disks in general can be enhanced by understanding the
dynamical processes observed at close-range and in real-time in planetary
rings. We review the known ring systems of the four giant planets, as well as
the prospects for ring systems yet to be discovered. We then review planetary
rings by type. The main rings of Saturn comprise our system's only dense broad
disk and host many phenomena of general application to disks including spiral
waves, gap formation, self-gravity wakes, viscous overstability and normal
modes, impact clouds, and orbital evolution of embedded moons. Dense narrow
rings are the primary natural laboratory for understanding shepherding and
self-stability. Narrow dusty rings, likely generated by embedded source bodies,
are surprisingly found to sport azimuthally-confined arcs. Finally, every known
ring system includes a substantial component of diffuse dusty rings. Planetary
rings have shown themselves to be useful as detectors of planetary processes
around them, including the planetary magnetic field and interplanetary
impactors as well as the gravity of nearby perturbing moons. Experimental rings
science has made great progress in recent decades, especially numerical
simulations of self-gravity wakes and other processes but also laboratory
investigations of coefficient of restitution and spectroscopic ground truth.
The age of self-sustained ring systems is a matter of debate; formation
scenarios are most plausible in the context of the early solar system, while
signs of youthfulness indicate at least that rings have never been static
phenomena.Comment: 82 pages, 34 figures. Final revision of general review to be
published in "Planets, Stars and Stellar Systems", P. Kalas and L. French
(eds.), Springer (http://refworks.springer.com/sss
On the coplanar eccentric non-restricted co-orbital dynamics
We study the phase space of eccentric coplanar co-orbitals in the non-restricted case. Departing from the quasi-circular case, we describe the evolution of the phase space as the eccentricities increase. We find that over a given value of the eccentricity, around 0.5 for equal mass co-orbitals, important topological changes occur in the phase space. These changes lead to the emergence of new co-orbital configurations and open a continuous path between the previously distinct trojan domains near the L_4 and L_5 eccentric Lagrangian equilibria. These topological changes are shown to be linked with the reconnection of families of quasi-periodic orbits of non-maximal dimension.publishe
