791 research outputs found
Lepton Acceleration in Pulsar Wind Nebulae
Pulsar Wind Nebulae (PWNe) act as calorimeters for the relativistic pair
winds emanating from within the pulsar light cylinder. Their radiative
dissipation in various wavebands is significantly different from that of their
pulsar central engines: the broadband spectra of PWNe possess characteristics
distinct from those of pulsars, thereby demanding a site of lepton acceleration
remote from the pulsar magnetosphere. A principal candidate for this locale is
the pulsar wind termination shock, a putatively highly-oblique,
ultra-relativistic MHD discontinuity. This paper summarizes key characteristics
of relativistic shock acceleration germane to PWNe, using predominantly Monte
Carlo simulation techniques that compare well with semi-analytic solutions of
the diffusion-convection equation. The array of potential spectral indices for
the pair distribution function is explored, defining how these depend
critically on the parameters of the turbulent plasma in the shock environs.
Injection efficiencies into the acceleration process are also addressed.
Informative constraints on the frequency of particle scattering and the level
of field turbulence are identified using the multiwavelength observations of
selected PWNe. These suggest that the termination shock can be comfortably
invoked as a principal injector of energetic leptons into PWNe without
resorting to unrealistic properties for the shock layer turbulence or MHD
structure.Comment: 19 pages, 5 figures, invited review to appear in Proc. of the
inaugural ICREA Workshop on "The High-Energy Emission from Pulsars and their
Systems" (2010), eds. N. Rea and D. Torres, (Springer Astrophysics and Space
Science series
Performance of the CMS Cathode Strip Chambers with Cosmic Rays
The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device
in the CMS endcaps. Their performance has been evaluated using data taken
during a cosmic ray run in fall 2008. Measured noise levels are low, with the
number of noisy channels well below 1%. Coordinate resolution was measured for
all types of chambers, and fall in the range 47 microns to 243 microns. The
efficiencies for local charged track triggers, for hit and for segments
reconstruction were measured, and are above 99%. The timing resolution per
layer is approximately 5 ns
Recommended from our members
Are galactic star formation and quenching governed by local, global, or environmental phenomena?
We present an analysis of star formation and quenching in the SDSS-IV
MaNGA-DR15, utilising over 5 million spaxels from 3500 local galaxies. We
estimate star formation rate surface densities () via dust
corrected flux where possible, and via an empirical relationship
between specific star formation rate (sSFR) and the strength of the 4000
Angstrom break (D4000) in all other cases. We train a multi-layered artificial
neural network (ANN) and a random forest (RF) to classify spaxels into `star
forming' and `quenched' categories given various individual (and groups of)
parameters. We find that global parameters (pertaining to the galaxy as a
whole) perform collectively the best at predicting when spaxels will be
quenched, and are substantially superior to local/ spatially resolved and
environmental parameters. Central velocity dispersion is the best single
parameter for predicting quenching in central galaxies. We interpret this
observational fact as a probable consequence of the total integrated energy
from AGN feedback being traced by the mass of the black hole, which is well
known to correlate strongly with central velocity dispersion. Additionally, we
train both an ANN and RF to estimate values directly via
regression in star forming regions. Local/ spatially resolved parameters are
collectively the most predictive at estimating in these
analyses, with stellar mass surface density at the spaxel location ()
being by far the best single parameter. Thus, quenching is fundamentally a
global process but star formation is governed locally by processes within each
spaxel.ERC Advanced Grant: 695671 "Quench
The ALMaQUEST Survey - V. The non-universality of kpc-scale star formation relations and the factors that drive them
ABSTRACT
Using a sample of ∼15 000 kpc-scale star-forming spaxels in 28 galaxies drawn from the ALMA-MaNGA QUEnching and STar formation (ALMaQUEST) survey, we investigate the galaxy-to-galaxy variation of the ‘resolved’ Schmidt–Kennicutt relation (rSK; –ΣSFR), the ‘resolved’ star-forming main sequence (rSFMS; Σ⋆–ΣSFR), and the ‘resolved’ molecular gas main sequence (rMGMS; Σ⋆–). The rSK relation, rSFMS, and rMGMS all show significant galaxy-to-galaxy variation in both shape and normalization, indicating that none of these relations is universal between galaxies. The rSFMS shows the largest galaxy-to-galaxy variation and the rMGMS the least. By defining an ‘offset’ from the average relations, we compute a ΔrSK, ΔrSFMS, ΔrMGMS for each galaxy, to investigate correlations with global properties. We find the following correlations with at least 2σ significance: The rSK is lower (i.e. lower star formation efficiency) in galaxies with higher M⋆, larger Sersic index, and lower specific SFR (sSFR); the rSFMS is lower (i.e. lower sSFR) in galaxies with higher M⋆ and larger Sersic index; and the rMGMS is lower (i.e. lower gas fraction) in galaxies with lower sSFR. In the ensemble of all 15 000 data points, the rSK relation and rMGMS show equally tight scatters and strong correlation coefficients, compared with a larger scatter and weaker correlation in the rSFMS. Moreover, whilst there is no correlation between ΔrSK and ΔrMGMS in the sample, the offset of a galaxy’s rSFMS does correlate with both of the other two offsets. Our results therefore indicate that the rSK and rMGMS are independent relations, whereas the rSFMS is a result of their combination.ERC
STF
5-a-day fruit and vegetable food product labels: reduced fruit and vegetable consumption following an exaggerated compared to a modest label.
BACKGROUND: Food product labels based on the WHO 5-a-day fruit and vegetable (FV) message are becoming increasingly common, but these labels may impact negatively on complementary or subsequent FV consumption. This study aimed to investigate the impact of a '3 of your 5-a-day' versus a '1 of your 5-a-day' smoothie product label on subsequent FV consumption. METHODS: Using an acute experimental design, 194 participants (90 males, 104 females) were randomised to consume a smoothie labelled as either '3 of your 5-a-day' (N = 97) or '1 of your 5-a-day' (N = 97) in full, following a usual breakfast. Subsequent FV consumption was measured for the rest of the day using 24-h recall. Usual FV consumption was also assessed via 24-h recall for the day before the study. RESULTS: Regression analyses revealed a significantly lower subsequent FV consumption following smoothies displaying the '3 of your 5-a-day' label compared to the '1 of your 5-a-day' label (Beta = - 0.15, p = 0.04). Secondary analyses revealed these effects to be driven mainly by changes to consumption in usual high FV consumers, in females and in vegetable as opposed to fruit consumption. CONCLUSIONS: These findings demonstrate a role for label information in food intake, and the potential negative impacts of an exaggerated food product label on healthy food consumption and healthy dietary profiles
Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV
The performance of muon reconstruction, identification, and triggering in CMS
has been studied using 40 inverse picobarns of data collected in pp collisions
at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection
criteria covering a wide range of physics analysis needs have been examined.
For all considered selections, the efficiency to reconstruct and identify a
muon with a transverse momentum pT larger than a few GeV is above 95% over the
whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4,
while the probability to misidentify a hadron as a muon is well below 1%. The
efficiency to trigger on single muons with pT above a few GeV is higher than
90% over the full eta range, and typically substantially better. The overall
momentum scale is measured to a precision of 0.2% with muons from Z decays. The
transverse momentum resolution varies from 1% to 6% depending on pseudorapidity
for muons with pT below 100 GeV and, using cosmic rays, it is shown to be
better than 10% in the central region up to pT = 1 TeV. Observed distributions
of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
New challenges for BRCA testing:a view from the diagnostic laboratory
Increased demand for BRCA testing is placing pressures on diagnostic laboratories to raise their mutation screening capacity and handle the challenges associated with classifying BRCA sequence variants for clinical significance, for example interpretation of pathogenic mutations or variants of unknown significance, accurate determination of large genomic rearrangements and detection of somatic mutations in DNA extracted from formalin-fixed, paraffin-embedded tumour samples. Many diagnostic laboratories are adopting next-generation sequencing (NGS) technology to increase their screening capacity and reduce processing time and unit costs. However, migration to NGS introduces complexities arising from choice of components of the BRCA testing workflow, such as NGS platform, enrichment method and bioinformatics analysis process. An efficient, cost-effective accurate mutation detection strategy and a standardised, systematic approach to the reporting of BRCA test results is imperative for diagnostic laboratories. This review covers the challenges of BRCA testing from the perspective of a diagnostics laboratory
Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV
The performance of muon reconstruction, identification, and triggering in CMS
has been studied using 40 inverse picobarns of data collected in pp collisions
at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection
criteria covering a wide range of physics analysis needs have been examined.
For all considered selections, the efficiency to reconstruct and identify a
muon with a transverse momentum pT larger than a few GeV is above 95% over the
whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4,
while the probability to misidentify a hadron as a muon is well below 1%. The
efficiency to trigger on single muons with pT above a few GeV is higher than
90% over the full eta range, and typically substantially better. The overall
momentum scale is measured to a precision of 0.2% with muons from Z decays. The
transverse momentum resolution varies from 1% to 6% depending on pseudorapidity
for muons with pT below 100 GeV and, using cosmic rays, it is shown to be
better than 10% in the central region up to pT = 1 TeV. Observed distributions
of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
Recommended from our members
How do central and satellite galaxies quench? - Insights from spatially resolved spectroscopy in the MaNGA survey
We investigate how star formation quenching proceeds within central and
satellite galaxies using spatially resolved spectroscopy from the SDSS-IV MaNGA
DR15. We adopt a complete sample of star formation rate surface densities
(), derived in Bluck et al. (2020), to compute the distance
at which each spaxel resides from the resolved star forming main sequence
( relation): . We study
galaxy radial profiles in , and luminosity weighted
stellar age (), split by a variety of intrinsic and environmental
parameters. Via several statistical analyses, we establish that the quenching
of central galaxies is governed by intrinsic parameters, with central velocity
dispersion () being the most important single parameter. High mass
satellites quench in a very similar manner to centrals. Conversely, low mass
satellite quenching is governed primarily by environmental parameters, with
local galaxy over-density () being the most important single
parameter. Utilising the empirical - relation, we estimate
that quenching via AGN feedback must occur at , and is marked by steeply rising radial
profiles in the green valley, indicating `inside-out' quenching. On the other
hand, environmental quenching occurs at over-densities of 10 - 30 times the
average galaxy density at z0.1, and is marked by steeply declining
profiles, indicating `outside-in' quenching. Finally,
through an analysis of stellar metallicities, we conclude that both intrinsic
and environmental quenching must incorporate significant starvation of gas
supply.ERC
STF
The ALMaQUEST Survey: The Molecular Gas Main Sequence and the Origin of the Star-forming Main Sequence
The origin of the star forming main sequence ( i.e., the relation between
star formation rate and stellar mass, globally or on kpc-scales; hereafter
SFMS) remains a hotly debated topic in galaxy evolution. Using the ALMA-MaNGA
QUEnching and STar formation (ALMaQUEST) survey, we show that for star forming
spaxels in the main sequence galaxies, the three local quantities,
star-formation rate surface density (\sigsfr), stellar mass surface density
(\sigsm), and the \h2~mass surface density (\sigh2), are strongly correlated
with one another and form a 3D linear (in log) relation with dispersion. In
addition to the two well known scaling relations, the resolved SFMS (\sigsfr~
vs. \sigsm) and the Schmidt-Kennicutt relation (\sigsfr~ vs. \sigh2; SK
relation), there is a third scaling relation between \sigh2~ and \sigsm, which
we refer to as the `molecular gas main sequence' (MGMS). The latter indicates
that either the local gas mass traces the gravitational potential set by the
local stellar mass or both quantities follow the underlying total mass
distributions. The scatter of the resolved SFMS ( dex) is the
largest compared to those of the SK and MGMS relations ( 0.2 dex).
A Pearson correlation test also indicates that the SK and MGMS relations are
more strongly correlated than the resolved SFMS. Our result suggests a scenario
in which the resolved SFMS is the least physically fundamental and is the
consequence of the combination of the SK and the MGMS relations
- …
